Analysis and Projection of The Influent Rate and Quality Parameters of Water in King Talal Dam

By
Ahmad Abdel Razzak Bani Hani

Supervisor
Dr. Ahmad I. Al Jamrah

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

Faculty of Graduate Studies
University of Jordan

August - 2002

This thesis was successfully defended and approved on: \qquad

Examination Committee

Dr. Ahmad Jamrah, Chairman
Associate Professor, Environmental Engineering
Department of Civil Engineering University of Jordan

Dr. Sulieman Tarawneh, Member
Associate Professor, Environmental Engineering
Department of Civil Engineering
University of Jordan

Dr. Tawfik Samaneh, Member
Assistant Professor, Environmental Engineering Department of Civil Engineering University of Jordan

Dr. Munjed Al-Sharif, Member
Assistant Professor, Environmental Engineering
Department of Civil Engineering
Jordan University of Science and Technology

DIDICATION

To my famify
 To whom I am proud to belong

With Best Regards
Eng. A. Bani Fani

ACKJOWLEDGEMENTS

To all those who
gave me the full assistance and support to
prepare and complete this thesis, especially
Dr. A. ÅJamrah,
Dr. Suleiman Tarawneh
and the head of Irrigation Department in Jordan
Valley Authority

My full thanks and gratitude

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 Introduction 1
1.2 Literature Review 4
2. KING TALAL DAM AND DATA COLLECTION 11
2.1 Philosophy of King Talal Dam Construction 11
2.2 Water Suppliers for King Talal Reservoir 12
2.2.1 Zarka River 12
2.2.2 Wadi Rumaimeen 14
2.3 Water Characteristics 16
2.3.1 Total suspended solids 16
2.3.2 Biochemical oxygen demand 17
2.3.3 Chemical oxygen demand 18
2.3.4 Phosphorus 18
2.3.5 Nitrogen 19
2.4 Data Collection 19
3. STATISTICAL ANALYSIS 28
3.1 Exploration of Data 28
3.2 Equations Needed in Forecasting 29
3.2.1 Normality of Data 29
3.2.1.1 Weibull Distribution 29
3.2.1.2 coefficient of variation process (COV) 29
3.2.1.3 Kurtosis process 30
3.2.1.4 Shapiro-Wilk test 31
3.2.2 Order of autoregressive 32
3.2.3 The moving average model 33
3.2.4 Autoregressive process with moving average residuals 34
3.2.5 Integrated models 34
3.2.6 Linear regression 35
3.2.7 Quadratic regression 36
3.2.8 Exponential growth regression 36
3.2.9 Single exponential smoothing 36
3.2.10 Testing differences between means 37
3.2.11 Cross and distance correlation 38
3.3 Statistical Software 38
3.4 Methodology 39
3.4.1 Outliers and missing data 39
3.4.2 Normality 40
3.4.2.1 Weibull distribution model histogram 40
3.4.2.2 coefficient of variance (COV) 40
3.4.2.3 Kurtosis coefficient 40
3.4.2.4 Shapiro-Wilk test 40
3.4.3 Order of (AR) 41
3.4.4 Order of moving average 41
3.4.5 Order of " I " 41
3.4.6 Forecasting future values 42
3.4.6.1 deterministic forecasting 42
3.4.6.2 stochastic forecasting 42
3.4.7 Results of forecasting 42
3.4.8 Cross correlation 43
3.5 Analysis 44
3.5.1 Total suspended solids (TSS) variable 44
3.5.1.1 detection of missing data and outliers 44
3.5.1.2 normality of data 47
A- Weibull's distribution model histogram 47
B- coefficient of variation (COV), preliminary test 48
C- Kurtosis coefficient (Peakedness), vertical test 49
D- Shapiro-Wilk test 50
3.5.1.3 order of (AR) 55
3.5.1.4 order of moving average (MA) 56
3.5.1.5 order of (I) 57
3.5.1.6 forecasting future values 58
A- deterministic forecasting 58
A1- linear regression model 58
A2- quadratic regression model 60
A3- exponential growth regression model 61
A4- single exponential smoothing model 63
B- stochastic forecasting 64
B1- auto regression model 64
B2- moving average regression model 65
B3- ARMA modeling 67
3.5.1.7 results of prediction 68
3.5.2 Biochemical oxygen demand $\left(\mathrm{BOD}_{5}\right)$ variable 69
3.5.2.1 detection of missing data and outliers 69
3.5.2.2 normality of data 72
A- Weibull's distribution model histogram 72
B- coefficient of variation (COV), preliminary test 73
C- Kurtosis coefficient (Peakedness), vertical test 74
D- Shapiro-Wilk test 75
3.5.2.3 order of (AR) 80
3.5.2.4 order of moving average (MA) 80
3.5.2.5 order of (I) 82
3.5.2.6 forecasting future values 83
A- deterministic forecasting 84
A1- linear regression model 84
A2- quadratic regression model 85
A3- exponential growth regression model 86
A4- single exponential smoothing model 87
B- stochastic forecasting 89
B1- auto regression model 89
B2- moving average regression model 90
B3- ARMA modeling 91
3.5.2.7 results of prediction 92
3.5.3 Chemical oxygen demand (COD) variable 93
3.5.3.1 detection of missing data and outliers 93
3.5.3.2 normality of data 96
A- Weibull's distribution model histogram 96
B- coefficient of variation (COV), preliminary test 97
C- Kurtosis coefficient (Peakedness), vertical test 98
D- Shapiro-Wilk test 99
3.5.3.3 order of (AR) 104
3.5.3.4 order of moving average (MA) 104
3.5.3.5 order of (I) 106
3.5.3.6 forecasting future values 108
A- deterministic forecasting 108
A1- linear regression model 108
A2- quadratic regression model 109
A3- exponential growth regression model 111
A4- single exponential smoothing model 112
B- stochastic forecasting 114
B1- auto regression model 114
B2- moving average regression model 115
B3- ARMA modeling 116
3.5.3.7 results of prediction 117
3.5.4 Total phosphorus (T-P) variable 118
3.5.4.1 detection of missing data and outliers 118
3.5.4.2 normality of data 121
A- Weibull's distribution model histogram 121
B- coefficient of variation (COV), preliminary test 122
C- Kurtosis coefficient (Peakedness), vertical test 123
D- Shapiro-Wilk test 124
3.5.4.3 order of (AR)
3.5.4.4 order of moving average (MA) 129
3.5.4.5 order of (I) 131
3.5.4.6 forecasting future values 133
A- deterministic forecasting 133
A1- linear regression model 133
A2- quadratic regression model 134
A3- exponential growth regression model 136
A4- single exponential smoothing model 137
B- stochastic forecasting 139
B1- auto regression model 139
B2- moving average regression model 139
B3- ARMA modeling 141
3.5.4.7 results of prediction 142
3.5.5 Total nitrogen (T-N) variable 143
3.5.5.1 detection of missing data and outliers 143
3.5.5.2 normality of data 145
A- Weibull's distribution model histogram 146
B- coefficient of variation (COV), preliminary test 147
C- Kurtosis coefficient (Peakedness), vertical test 147
D- Shapiro-Wilk test 148
3.5.5.3 order of (AR) 153
3.5.5.4 order of moving average (MA) 153
3.5.5.5 order of (I) 155
3.5.5.6 forecasting future values 157
A- deterministic forecasting 157
A1- linear regression model 157
A2- quadratic regression model 158
A3- exponential growth regression model 159
A4- single exponential smoothing model 161
B- stochastic forecasting 162
B1- auto regression model 162
B2- moving average regression model 163
B3- ARMA modeling 164
3.5.5.7 results of prediction 165
3.5.6 Rate flow (Q) variable 167
3.5.6.1 detection of missing data and outliers 167
3.5.6.2 normality of data 169
A- Weibull's distribution model histogram 169
B- coefficient of variation (COV), preliminary test 171
C- Kurtosis coefficient (Peakedness), vertical test 171
D- Shapiro-Wilk test 172
3.5.6.3 order of (AR) 177
3.5.6.4 order of moving average (MA) 178
3.5.6.5 order of (I) 179
3.5.6.6 forecasting future values 181
A- deterministic forecasting 181
A1- linear regression model 181
A2- quadratic regression model 183
A3- exponential growth regression model 184
A4- single exponential smoothing model 185
B- stochastic forecasting 187
B1- auto regression model 187
B2- moving average regression model 188
B3- ARMA modeling 189
3.5.6.7 results of prediction 189
3.6 Cross and Distance Correlation 191
3.6.1 Cross correlation in Zarka's River variables 191
3.6.1.1 cross correlation between Zarka's River flow in 191MCM/month and TSS in mg/l
3.6.1.2 cross correlation between Zarka's River flow in 191$\mathrm{MCM} /$ month and BOD_{5} in mg / l
3.6.1.3 cross correlation between Zarka's River flow in 192MCM/month and COD in mg/l
3.6.1.4 cross correlation between Zarka's River flow in 192
MCM/month and T-P in mg/l
3.6.1.5 cross correlation between Zarka's River flow in 192
MCM/month and T-N in mg/l
3.6.1.6 cross correlation between Zarka's River TSS in mg / l and 192
BOD_{5} in mg / l
3.6.1.7 cross correlation between Zarka's River TSS in mg/l and 193
COD in mg / l
3.6.1.8 cross correlation between Zarka's River TSS in mg / l and 193 T-P in mg/l
3.6.1.9 cross correlation between Zarka's River TSS in mg / l and 193T-N in mg/l
3.6.1.10 cross correlation between Zarka's River BOD_{5} in mg / l 194 and COD in mg / l
3.6.1.11 cross correlation between Zarka's River BOD_{5} in mg / l 194 and T-P in mg / l
3.6.1.12 cross correlation between Zarka's River BOD_{5} in mg/l 194 and T-N in mg/l
3.6.1.13 cross correlation between Zarka's River COD in mg/l 194 and T-P in mg/l
3.6.1.14 cross correlation between Zarka's River COD in mg/l 195 and T-N in mg / l
3.6.1.15 cross correlation between Zarka's River T-P in mg / l and 196
T-N in mg/l
3.6.2 Distance cross correlation between Zarka River and Samra's 196 effluent
3.6.2.1 distance cross correlation function: Zarka flow 196 MCM/month; Samra flow MCM/month
3.6.2.2 distance cross correlation function: Zarka TSS mg/l; TSS 196Samra mg/l
3.6.2.3 distance cross correlation function: Zarka $\mathrm{BOD}_{5} \mathrm{mg} / \mathrm{l}$; 197 BOD_{5} Samra mg/l
3.6.2.4 distance cross correlation function: Zarka $\operatorname{COD~mg/l;~}$ 197 COD Samra mg/l
3.6.2.5 distance cross correlation function: Zarka T-P mg/l; T-P 197 Samra mg/l
3.6.2.6 distance cross correlation function: Zarka T-N mg/l; T-N 197 Samra mg/l
4. DISCUSSION, CONCLUSION AND RECOMMECDATION 199
4.1 Discussion and Conclusion 199
4.2 Recommendations 204
APPENDICES 207
REFERENCES 234

LIST OF TABLES

Page
Table (1): Data of water entering King Talal Reservoir from Zarka River 20
Table (2): Data of Samra Wastewater Treatment Plant Effluent 24
Table (3): The coefficient of variable for TSS 48
Table (4): The Kurtosis Coefficient for TSS 49
Table (5): Shapiro-Wilk Test for the Data of TSS's $1^{\text {st }}$ quarter 51
Table (6): Shapiro-Wilk Test for the Data of TSS's $2^{\text {nd }}$ quarter 52
Table (7): Shapiro-Wilk Test for the Data of TSS's $3^{\text {rd }}$ quarter 53
Table (8): Shapiro-Wilk Test for the Data of TSS's $4^{\text {th }}$ quarter 54
Table (9): The values of the predicted and actual data by linear regression for 60TSS variable
Table (10): The values of the predicted and actual data by quadratic regression61for TSS variableTable (11): The values of the predicted and actual data by exponential growth62regression for TSS variable
Table (12): Forecasted, lower, upper and actual values for single exponential 64 smoothing for TSS variable
Table (13): Forecasted, lower, upper and actual values for AR (1) for TSS65variable
Table (14): Forecasted, lower, upper and actual values for MA (4) for TSS 66 variable
Table (15): Forecasted, lower, upper and actual values for ARIMA (1,0,4) for 67 TSS variable
Table (16): Percentage of error of each model for TSS variable 68
Table (17): The coefficient of variable for BOD_{5} 73
Table (18): The Kurtosis Coefficient for BOD_{5} 74
Table (19): Shapiro-Wilk Test for the Data of BOD_{5} 's $1^{\text {st }}$ quarter 76
Table (20): Shapiro-Wilk Test for the Data of BOD_{5} 's $2^{\text {nd }}$ quarter 77

Table (21): Shapiro-Wilk Test for the Data of BOD_{5} 's $3^{\text {rd }}$ quarter 78
Table (22): Shapiro-Wilk Test for the Data of BOD_{5} 's $4^{\text {th }}$ quarter 79
Table (23): The values of the predicted and actual data by linear regression for 84 BOD_{5} variable
Table (24): The values of the predicted and actual data by quadratic regression for BOD_{5} variable
Table (25): The values of the predicted and actual data by exponential growth regression for BOD_{5} variable

Table (26): Forecasted, lower, upper and actual values by single exponential smoothing for BOD_{5} variable
Table (27): Forecasted, lower, upper and actual values by AR (1) for BOD_{5} variable
Table (28): Forecasted, lower, upper and actual values by MA (3) for BOD_{5} variable

Table (29): Forecasted, lower, upper and actual values by ARMA $(1,3)$ for BOD_{5} variable

Table (30): Percentage of error of each model for BOD_{5} variable 92
Table (31): The coefficient of variable for COD 97
Table (32): The Kurtosis Coefficient for COD 98
Table (33): Shapiro-Wilk Test for the Data of COD's $1^{\text {st }}$ quarter 100
Table (34): Shapiro-Wilk Test for the Data of COD's 2 ${ }^{\text {nd }}$ quarter 101
Table (35): Shapiro-Wilk Test for the Data of COD's 3 ${ }^{\text {rd }}$ quarter 102
Table (36): Shapiro-Wilk Test for the Data of COD's 4 ${ }^{\text {th }}$ quarter 103
Table (37): The values of the predicted and actual data by linear regression for 109 COD variable

Table (38): The values of the predicted and actual data by quadratic regression for COD variable

Table (39): The values of the predicted and actual data by exponential growth regression for COD variable

Table (40): Forecasted, lower, upper and actual values by single exponential smoothing for COD variable
Table (41): Forecasted, lower, upper and actual values by AR (1) for COD variable
Table (42): Forecasted, lower, upper and actual values by MA (4) for COD variable

Table (43): Forecasted, lower, upper and actual values by ARIMA (1,2,4) for COD variable
Table (44): Percentage of error of each model for COD variable
Table (45): The coefficient of variable for T-P
Table (46): The Kurtosis Coefficient for T-P 123

Table (47): Shapiro-Wilk Test for the Data of T-P’s $1^{\text {st }}$ quarter 125
Table (48): Shapiro-Wilk Test for the Data of T-P's 2 ${ }^{\text {nd }}$ quarter 126
Table (49): Shapiro-Wilk Test for the Data of T-P's 3 ${ }^{\text {rd }}$ quarter 127
Table (50): Shapiro-Wilk Test for the Data of T-P's 4 ${ }^{\text {th }}$ quarter 128
Table (51): The values of the predicted and actual data by linear regression for 134 T-P variable
Table (52): The values of the predicted and actual data by quadratic regression for T-P variable
Table (53): The values of the predicted and actual data by exponential growth regression for T-P variable
Table (54): Forecasted, lower, upper and actual values by single exponential smoothing for T-P variable
Table (55): Forecasted, lower, upper and actual values by AR(1) for T-P variable

Table (56): Forecasted, lower, upper and actual values by MA(4) for T-P variable

Table (57): Forecasted, lower, upper and actual values by $\operatorname{ARIMA}(1,2,4)$ for T P variable
Table (58): Percentage of error of each model for T-P variable
Table (59): The coefficient of variable for T-N 147
Table (60): The Kurtosis Coefficient for T-N 148
Table (61): Shapiro-Wilk Test for the Data of T-N's $1^{\text {st }}$ quarter 149
Table (62): Shapiro-Wilk Test for the Data of T-N's $2^{\text {nd }}$ quarter 150
Table (63): Shapiro-Wilk Test for the Data of T-N's $3^{\text {rd }}$ quarter 151
Table (64): Shapiro-Wilk Test for the Data of T-N's $4^{\text {th }}$ quarter 152
Table (65): The values of the predicted and actual data by linear regression for 158
T-N variableTable (66): The values of the predicted and actual data by quadratic regression159for T-N variable
Table (67): The values of the predicted and actual data by exponential growth 160regression for T-N variableTable (68): Forecasted, lower, upper and actual values by single exponential161smoothing for T-N variable
Table (69): Forecasted, lower, upper and actual values by AR (1) for T-N162variableTable (70): Forecasted, lower, upper and actual values by MA (5) for T-N164variable
Table (71): Forecasted, lower, upper and actual values by ARIMA $(1,2,5)$ for T- 165 N variable
Table (72): Percentage of error of each model for T-N variable 165
Table (73): The coefficient of variable for $\log (\mathrm{Q})$ 171
Table (74): The Kurtosis Coefficient for $\log (\mathrm{Q})$ 172
Table (75): Shapiro-Wilk Test for the Data of $\log \left(\mathrm{Q}\right.$'s) $1^{\text {st }}$ quarter 173
Table (76): Shapiro-Wilk Test for the Data of \log (Q's) $2^{\text {nd }}$ quarter 174
Table (77): Shapiro-Wilk Test for the Data of $\log \left(\mathrm{Q}\right.$'s) $3^{\text {rd }}$ quarter 175
Table (78): Shapiro-Wilk Test for the Data of $\log \left(\mathrm{Q}\right.$'s) $4^{\text {th }}$ quarter 176
Table (79): The values of the predicted and actual data by linear regression for 182$\log (\mathrm{Q})$ variable

Table (80): The values of the predicted and actual data by quadratic regression for $\log (\mathrm{Q})$ variable

Table (81): The values of the predicted and actual data by exponential growth regression for $\log (\mathrm{Q})$ variable
Table (82): Forecasted, lower, upper and actual values by single exponential 186 smoothing for $\log (\mathrm{Q})$ variable
Table (83): Forecasted, lower, upper and actual values by AR (1) for Q 187
variable
Table (84): Forecasted, lower, upper and actual values by MA (6) for $\log (\mathrm{Q})$ 188 variable

Table (85): Percentage of error of each model for $\log (\mathrm{Q})$ variable 189

LIST OF FIGURES

Page
Figure (1): King Talal's Catchment area and branches 13
Figure (2): King Talal reservoir inlets and outlets 15
Figure (3): Original Data of TSS 45
Figure (4): Outliers for Seasonal Analysis for TSS Variable 46
Figure (5): The New Adjusted Data for TSS mg/l 47
Figure (6): Weibull Distribution Model Histogram for TSS 48
Figure (7): Autocorrelation Function for TSS Variable 55
Figure (8): Moving Average of TSS with Different Values of (p) 56
Figure (9): Component Analysis for TSS mg/l 57
Figure (10): ARIMA (1,0,4) Model Diagnostics for TSS Variable 58
Figure (11): ARIMA (1,2,4) Model Diagnostics for TSS Variable 58
Figure (12): Trend Analysis for TSS Variable (Linear Trend Model) 59
Figure (13): Trend Analysis for TSS Variable (Quadratic Trend Model) 60
Figure (14): Trend Analysis for TSS Variable (Exponential Growth Model) 61
Figure (15): Single Exponential Smoothing for TSS mg/l 63
Figure (16): Moving Average Trend for TSS mg/l 65
Figure (17): Original Data of BOD_{5} 70
Figure (18): Outliers for Seasonal Analysis for BOD_{5} Variable 71
Figure (19): The New Adjusted Data for $\mathrm{BOD}_{5} \mathrm{mg} / \mathrm{l}$ 71
Figure (20): Weibull Distribution Model Histogram for BOD_{5} 73
Figure (21): Autocorrelation Function for BOD_{5} Variable 80
Figure (22): Moving Average of BOD_{5} with Different Values of (p) 81
Figure (23): Component Analysis for $\mathrm{BOD}_{5} \mathrm{mg} / \mathrm{l}$ 82

Figure (24): ARIMA (1,0,3) Model Diagnostics for BOD_{5} Variable 83
Figure (25): Trend Analysis for BOD_{5} Variable (Linear Trend Model) 84
Figure (26): Trend Analysis for BOD_{5} Variable (Quadratic Trend Model) 85
Figure (27): Trend Analysis for BOD_{5} Variable (Exponential Growth Model) 86
Figure (28): Single Exponential Smoothing for $\mathrm{BOD}_{5} \mathrm{mg} / \mathrm{l} 88$
Figure (29): Moving Average Trend for $\mathrm{BOD}_{5} \mathrm{mg} / \mathrm{l} 89$
Figure (30): Original Data of COD 94
Figure (31): Outliers for Seasonal Analysis for COD Variable 95
Figure (32): The New Adjusted Data for COD mg/l 95
Figure (33): Weibull Distribution Model Histogram for COD 97
Figure (34): Autocorrelation Function for COD Variable 104
Figure (35): Moving Average of COD with Different Values of (p) 105
Figure (36): Component Analysis for COD mg/l 106
Figure (37): ARIMA (1,0,4) Model Diagnostics for COD Variable 107
Figure (38): ARIMA (1,2,4) Model Diagnostics for COD Variable 107
Figure (39): Trend Analysis for COD Variable (Linear Trend Model) 108
Figure (40): Trend Analysis for COD Variable (Quadratic Trend Model) 110
Figure (41): Trend Analysis for COD Variable (Exponential Growth Model) 111
Figure (42): Single Exponential Smoothing for COD mg/l 112
Figure (43): Moving Average Trend for COD mg/l 115
Figure (44): Original Data of T-P 119
Figure (45): Outliers for Seasonal Analysis for T-P Variable 120
Figure (46): The New Adjusted Data for T-P mg/l 120
Figure (47): Weibull Distribution Model Histogram for T-P 122
Figure (48): Autocorrelation Function for T-P Variable 129

Figure (49): Moving Average of T-P with Different Values of (p) 130
Figure (50): Component Analysis for T-P mg/l 131
Figure (51): ARIMA (1,0,4) Model Diagnostics for T-P Variable 132
Figure (52): ARIMA (1,2,4) Model Diagnostics for T-P Variable 132
Figure (53): Trend Analysis for T-P Variable (Linear Trend Model) 133
Figure (54): Trend Analysis for T-P Variable (Quadratic Trend Model) 135
Figure (55): Trend Analysis for T-P Variable (Exponential Growth Model) 136
Figure (56): Single Exponential Smoothing for T-P mg/l 137
Figure (57): Moving Average Trend for T-P mg/l 140
Figure (58): Original Data of T-N 143
Figure (59): Outliers for Seasonal Analysis for T-N Variable 144
Figure (60): The New Adjusted Data for T-N mg/l 145
Figure (61): Weibull Distribution Model Histogram for T-N 146
Figure (62): Autocorrelation Function for T-N Variable 153
Figure (63): Moving Average of T-N with Different Values of (p) 154
Figure (64): Component Analysis for T-N mg/l 155
Figure (65): ARIMA (1,0,5) Model Diagnostics for T-N Variable 156
Figure (66): ARIMA (1,2,5) Model Diagnostics for T-N Variable 156
Figure (67): Trend Analysis for T-N Variable (Linear Trend Model) 157
Figure (68): Trend Analysis for T-N Variable (Quadratic Trend Model) 158
Figure (69): Trend Analysis for T-N Variable (Exponential Growth Model) 160
Figure (70): Single Exponential Smoothing for T-N mg/l 161
Figure (71): Moving Average Trend for T-N mg/l 163
Figure (72): Original Data of Zarka River Flow 167
Figure (73): Outliers for Seasonal Analysis for Q Variable 168
Figure (74): Weibull Distribution Model Histogram for Q 170
Figure (75): Weibull Distribution Model Histogram for $\log (\mathrm{Q})$ 170
Figure (76): Autocorrelation Function for $\log (\mathrm{Q})$ Variable 177
Figure (77): Moving Average of $\log (\mathrm{Q})$ with Different Values of (p) 178
Figure (78): Component Analysis for $\log (\mathrm{Q}) \mathrm{MCM} /$ month 179
Figure (79): ARIMA $(1,0,6)$ Model Diagnostics for $\log (Q)$ Variable 180
Figure (80): ARIMA $(1,2,6)$ Model Diagnostics for $\log (\mathrm{Q})$ Variable 181
Figure (81): Trend Analysis for $\log (\mathrm{Q})$ Variable (Linear Trend Model) 182
Figure (82): Trend Analysis for $\log (\mathrm{Q})$ Variable (Quadratic Trend Model) 183
Figure (83): Trend Analysis for $\log (\mathrm{Q})$ Variable (Exponential Growth Model) 184
Figure (84): Single Exponential Smoothing for $\log (\mathrm{Q})$ MCM/month 186
Figure (85): Moving Average Trend for $\log (\mathrm{Q}) \mathrm{MCM} /$ month 188
Figure (86): Example on the Cross Correlation Function: BOD5; COD mg/l 195
Figure (86): Example on the Distance Correlation Function: BOD5 in Zarka River 198mg/l; BOD5 Samra mg/l

XVIII

LIST OF SYMBOLS

P : The estimated probability of an X value
M : The Rank
n : The number of data
S : Standard deviation

X : The mean
C_{k} : Coefficient of Kurtosis.

K : The fourth moment about the mean.
$X_{i}: \quad$ Observed data at time i.
Wi : Shapiro-Wilk statistics
$\mathrm{U}_{\mathrm{t}}: \quad$ Random process with mean equals to zero and variance equals to one.
β_{r} : Unknown parameter with $\beta_{0}=1$ and $\left|\beta_{\mathrm{r}}\right|<1$.
$Y_{i}: \quad$ Observation (data) at time equals to i.
$\lambda: \quad$ The lag operator
α_{q} : Unknown parameter, $\alpha_{0}=1$ and $\left|\alpha_{\mathrm{q}}\right|<1$.
v_{t} : Is a sequence of independent random variables with $\xi \mathrm{v}_{\mathrm{t}}=0$ and $\xi \mathrm{v}_{\mathrm{t}}^{2}=\sigma^{2}$.
$\mathrm{W}_{\mathrm{t}}=\nabla:$ Differentiation of Yi

P : Unknown parameter with $\rho_{0}=1$ and $\mid \rho_{\mathrm{r}}<1$.
a : The regression constant
b_{y} : The regression coefficient
θ : Smoothing constant, $0<\theta<1$
ρ_{xy} : \quad The correlation coefficient
p,d,q : ARIMA coefficients

Analysis and Projection of The Influent Rate and Quality Parameters of Water in King Talal Dam

By

Ahmad Abdel Razzak Bani Hani

Supervisor
Dr. Ahmad I. Al Jamrah

Abstract

King Talal Reservoir (KTR) is one of the most important projects in Jordan. This project is used to irrigate wide regions in the Jordan Valley. Studying the water quality and quantity in King Talal Reservoir (KTR), and the trends of influent rate and quality should be a priority in Jordan.

This study concentrates on studying and projection quantity and quality variables in Zarka River (main branch and supplier of KTR). The quantity variable used was the flow, and, the quality variables were (TSS, BOD5, COD, T-P, and T-N) in Zarka River. The data collected for each variable was containing 156 months from the year 1988 till the end of the year 2000. The procedure used in analyzing the six variables in Zarka River is through auto, cross, and vertical distance correlation between a point in Zarka River and another point, which was a point in the Samra's effluent. Deterministic and stochastic (ARIMA model) forecasting of the six variables were used in finding the best model to be used in projection.

The study results indicate that the ARIMA model is a good model in predicting most of the six variables. In forecasting the BOD5 variable non of the modeling satisfied the 10 percentage of mean error but ARIMA model gave the best model and the least percentage of mean error. However, ARIMA model did not give the best modeling in
the COD variable. The least percentage of mean error of all variables by ARIMA modeling was equal to 4.8% in the T-P variable. The cross and distance correlation gave information about the variables, such as: the relation of the variables together, the form of the variables in Zarka River, the source of the variables, and other information.

1. INTRODUCTION

1.1 Introduction

Jordan is one of the countries of the Middle East. Jordan has an area of 90 thousand Km^{2} and population of about 4.9 million in the year 1999 according to (General Statistical Department, 2000). The population growth rate is about 3.6% per year. One of the problems facing Jordan is water; Jordan's climate is classified as a semi-arid one. The climate is mainly characterized by low precipitation and humidity. Approximately 80% of Jordan's area receives an average precipitation of less than 100 $\mathrm{mm} /$ year. The evaporation rate in some parts of Jordan ranges from 5 to 80 times the average amount of precipitation (Salameh, 1996).

Water consumption categories in Jordan are mainly divided into three types. These include domestic, industrial, and agricultural water consumption. These categories constitute $25 \%, 5 \%$, and 70% of the total water consumption respectively. It should be noted that the annual agricultural water consumption in 1995 was about 639.7 MCM (RSS, 1998).

Many projects were done to increase the usage of water. One of the most important projects was King Talal Reservoir (KTR). (KTR) is one of the most important projects in Jordan and is used to irrigate wide regions in the Jordan Valley, which is estimated to be about $100 \mathrm{Km}^{2}$. The capacity of (KTR) is estimated to be about 86 million m^{3} with a depth of 108 m and a catchment area of $3175 \mathrm{Km}^{2}$. The inlet of water to King Talal Reservoir is mainly from Zarka Stream and Ramemen Wadi. The influent
water to the reservoir is a mixture of rainfall and springs water mixed with domestic and industrial waste (WAJ, 1998).

The difference in quality and quantity of water and wastewater in (KTR) mandates the implementation of a continuous monitoring program of quantity and quality. Monitoring activities should aim at investigating whether the effluent of (KTR) is within the limits of the irrigation standards. Forecasting the water quantity and quality should help in establishing some precautional measures, which should assist in resolving the anticipated problems.

The term water quality refers to the suitability of water to a particular purpose. Any physical, chemical, or biological property that influences the use of water is called water quality variable. Water quality standards have been developed to serve as guidelines for selecting water supplies for various activities (Boyd, 2000).

The water quality variables that will be forecasted in this thesis are TSS, BOD, COD, T-P, and T-N. Total suspended solids (TSS) is the most important physical characteristics of wastewater, which is composed of floating matter, settleable matter, colloidal matter, and matter in solution. Analytically, the total suspended solids content is defined as all matter that remains as residue upon filtration and then evaporation at 103 to $105{ }^{\circ} \mathrm{C}$. Biochemical oxygen demand (BOD) is a chemical characteristic. The most widely used parameter of organic pollution applied to both wastewater and surface water is the 5-days $\mathrm{BOD}\left(\mathrm{BOD}_{5}\right)$. This determination involves the measurements of the dissolved oxygen used by microorganisms in the biochemical oxidation of organic matter. Chemical oxygen demand (COD) is a chemical characteristic used to measure the organic and inorganic pollutants in wastewater. Finally the total Nitrogen and

Phosphorus are chemical characteristics and essential to the growth of the protista and plants. Inspite of the fact that they are chemical characteristics, they are necessary to evaluate the treatability of wastewater by biological processes (Metcalf \& Eddy, 1991).

These five water quality variables will be analyzed and forecasted using statistical methods. Any statistical analysis of data has to be based upon some assumed probability model for those data (Green \& Margerison, 1977). If a series has shown some trend or persistent pattern in its variations for long period of time in the past, it will be sensible to assume that such patterns or regularities will continue in the future (Chao, 1974). But one should take into consideration that in decision-making, forecasts are usually wrong. The magnitude of the forecasting errors experienced will depend upon the forecasting system used (Montogomery \& Johnson 1976).

The main objectives of forecasting, for environmental quality can be summarized as; firstly, the data is frequently expensive to accumulate so that using forecasting can minimize it. Secondly, correlation between the constituents may help the filling of missing data or the identification of outlier data. Finally, it is useful in detection of any deterioration in environmental quality, because early detection may provide the opportunity for controlling the problem at a lower cost before the problem magnifies (Bean \& Rover 1998).

The aim of this research is to study the water quality and quantity in (KTR). Trends of influent rate and quality will be established and analyzed as a function of time. A time series model will then be derived to represent the trends and help in making future projections.

1.2 Literature Review

Many researchers have investigated the subject of forecasting in the field of water quantity and quality. Some of the topics investigated include water quality of surface and ground water, water level, water flow, floods and rainfall, design and operation of biological wastewater treatments, wastewater treatment plant performance, long term effluent quality, and other papers in forecasting field.

Miao-Hsiang PENG and Jin-King LIU (2000) have studied the groundwater level forecasting with time series analysis. This study investigates the application of time series analysis methods for forecasting groundwater levels. The study site is located in western Taiwan where serious land subsidence has occurred. A series of monthly groundwater level observations made during the period 1993 and 1999 is used for the experiments. Univariate time series models including ARIMA models and the time series decomposition method are applied and the resulting accuracy is compared. Empirical results indicate that groundwater level data series in this study are cyclical. ARIMA models generate more accurate forecasts than the decomposition model. The forecasting of ARIMA models presents the characteristics of trend and seasonal variation.
A. Lehmann and M. Rode (1999) have studied long-term behavior and crosscorrelation analysis of water quality parameters of the Elbe River at Magdeburg, Germany. This study analyses weekly data samples from the Elbe River at Magdeburg between 1984 and 1996 to investigate the changes in metabolism and water quality in the Elbe River since the German reunification in 1990. Modeling water quality variables by Univariate time series models such as autoregressive component models and

ARIMA models reveals the improvement of water quality due to the reduction of wastewater emissions since 1990. The models are used to determine the long-term and seasonal behavior of important water quality parameters. A new procedure for testing the significance of a sample correlation coefficient is discussed. The cross-correlation analysis is applied to hydro-physical, biological, and chemical water quality variables of the Elbe River since 1990. Special emphasis is laid on the detection of spurious sample correlation coefficients.
D. P. Solomatine, C. J. Rojas, S. Velickov and J. C. Wüst (2000) have studied Chaos theory in predicting surge water levels in the North Sea. The problem of predicting surge water levels is important for ship guidance and navigation. The data collected in the coastal waters of the Netherlands (Hook of Holland) is analyzed with an objective of making such prediction. It was found that the correlation between data on surge, temperature, air pressure and wind is not sufficient to rely only on the inputoutput (connectionist) models like neural networks. It appeared that the surge time series in itself has enough information to make predictions. The applied linear prediction methods including autocorrelation and ARIMA models could not provide sufficient accuracy. Features of chaotic behavior were identified in surge, and methods of chaos theory were applied. The predictions are quite accurate (RMSE is 3.6 cm for 1 hour, and 6.1 cm for 3 hours). Possible techniques allowing for increase of the prediction accuracy and horizon (wavelet analysis, data mining techniques) were also identified.

Rodel (1997) studied the time series analysis of rising underground salt-water from the abandoned Werra potash-mining district in Germany. Time series analysis has
provided detailed information about the rates of discharge of salt-water disposed of under the Werra potash-mining district.

Hammett (1988) had studied the water use, land use, stream flow, and water quality characteristics of the Charlotte Harbor inflow area, USA-Florida. Florida is being subjected to increasing environmental stress by rapid population growth and development. So increase in freshwater demand is required. The three major rivers exist there flow into the harbor. Time series analysis was used in one of the rivers stations to forecast a decreasing trend after a long-term analysis. The increased population will require an additional 70 million gal/ day.

Berthouex and Box (1996) had studied time series models for forecasting wastewater treatment plant performance. The time series model has the form of an exponentially weighted moving average (EWMA). The interpretation of the model is that response of the system can be predicted by deviations from the EWMA smoothed values of the predictor variables.

Stegmann, Ehring, and Liem (1978) studied the application of time series analysis in water quality management and the prediction of the changes in water quality of the Oker River in Germany, on the basis of trends in dissolved oxygen and chloride levels. The environmental impacts of external factors were qualified by measuring the difference between measured water quality indicators and the extrapolated values.

Ellis, Ge , and Grasso (1990) studied the time series analysis of wastewater quality. In the treatment facilities, accurate time series forecasts must be available as
input data. The wastewater influent variables were analyzed using the application of ARMA and multivariate ARMA.

Paul A. Conrads (1998) has studied the effects of model output time averaging on the determination of the assimilative capacity of the Waccamaw River and Atlantic Intracoastal Waterway near Myrtle Beach, South Carolina. A branched Lagrangian transport model was calibrated and validated for the tidally influenced portions of the Waccamaw and Pee Dee Rivers, Bull Creek, and the Atlantic Intracoastal Waterway near Myrtle Beach, South Carolina. In determining the assimilative capacity of the Atlantic Intracoastal Waterway, 1-hour, 24-hour, 14-day, and 30-day averaging intervals were used. For each averaging interval, point-source loadings in the model were increased until the state dissolved-oxygen standard was violated. Results of the averaging intervals and point-source loadings for two locations were evaluated by comparing time series of dissolved-oxygen concentration at critical locations and longitudinal profiles of average dissolved-oxygen concentration for particular reaches of the system. The concentrations of the oxygen-consuming constituents that can be assimilated vary by 180 percent, depending upon the averaging interval used for interpreting the simulation model output
M. Stein and J. Lloret (1999) have studied forecasting of air and water temperatures using Fishery Statistical Methods to describe and forecast monthly mean air and bottom water temperatures from 3 sites in the Northwest Atlantic region, up to one year in advance. ARIMA (Auto-Regressive-Integrated-Moving- Average) models were developed that accounted for 92% of the total variability in the long-term time series of monthly means of air temperature and 80% for bottom water temperatures.

These models were then used to forecast conditions in 1999 with results showing good agreement between the predicted and observed values of both air and bottom water temperatures. Intervention analysis that models events as step-like features was also carried out. While this provided a better model fit to the observed data series, such events cannot be predicted. Since nearly all fitted interventions appeared during winter (December-March), prediction of temperatures during these months must be viewed with caution. Results showed that the use of ARIMA models yields better forecasts for highly variable time series than simple models based upon averages of previous monthly averages alone.

Hare, S.R. and R.C. Francis (1994) have studied the climate change and salmon production in the Northeast Pacific Ocean. Alaskan salmon stocks have exhibited enormous fluctuations in production during the century. They investigate their hypothesis that large-scale salmon-production variation was driven by the climatic processes in the Northeast Pacific Ocean. Using a time-series analytical techniques known as intervention analysis, they demonstrate that Alaskan salmonids alternate between high and low production regimes. The transition from high (low) regime to low (high) regime is called an intervention. To test for intervention, they first fitted the salmon time series to univariate autoregressive integrated moving average (ARIMA) models. On the basis of tentatively identified climatic regression, potential interventions were then identified and incorporated into the models, and the result was compared with the non-intervention models. A highly significant positive step intervention in the 1970s and a significant negative step intervention in the late 1940s were identified in the Alaska salmon stocks analyzed. We review the evidence for synchronous regime shift in
the 1940s and late 1970s that coincide with the shifts in salmon production. Potential mechanism in North Pacific climate processes to salmon production is identified.

Lu Guanghua, Tang Jie, Yuan Xing, and Zhao Yuanhui (2001) have studied Correlation for the structure and biodegradability of substituted benzenes in the Songhua river water. The biodegradability of 47 substituted benzenes was determined by BOD technique. The molecular weight $\left(M_{w}\right)$, the total surface area (TSA), the energy of the highest occupied molecular orbital ($E_{\text {номо }}$), the heat of formation $\left(H_{f}\right)$, and the moment of dipole of 47 studied compounds were calculated by the quantum chemical method MOPAC6.0-AM1. The ionization constant $\left(p K_{a}\right)$ and n-octanol/water partition coefficient $(\log P)$ were obtained from Qsar software and Biobyte software, respectively. The quantitative structure-biodegradability relationship studies were developed by linear regression analysis. The correct prediction rate of obtained model is up to 85% for the testing set. It has been shown that the biodegradability of substituted benzenes in natural river water is mainly related to electronic parameter Еномо, H_{f} and steric parameter M_{w}.
P.D. LaValle, V.C. Lakhan, and A.S. Trenhaile (2000) have studied the short term fluctuations of Lake Erie water levels and the $\mathrm{El} \mathrm{Nio} /$ Southern Oscillation. This study assesses the relationship between short term fluctuations of Lake Erie water levels and the El Niö/Southern Oscillation (ENSO) using data collected from May 1978 to May 1997. After standardizing the collected data, graphical and Box-Jenkins time series techniques are utilized to assess the temporal interrelationship of the Southern Oscillation Index and Lake Erie water level variables. The statistical results demonstrate that a first-order auto regressive model AR (1) provides the best fit for the data sets of
the analyzed variables. Both the graphical and statistical results suggest that short term Lake Erie water levels are fluctuating in response to the two ENSO phases, El Nio and La Nió. Negative values of the Southern Oscillation Index are related to higher lake levels while positive values are associated with lower lake levels.
N. Koning and JC Roos (1999) have studied the continued influence of organic pollution on the water quality of the turbid Modder River. The Modder River is a relatively small river, which drains an area of $7,960 \mathrm{~km} 2$, in the central region of the Free State Province, South Africa, and has a mean annual runoff of $184 \times 106 \mathrm{~m} 3$. Botshabelo is a city that was developed in the catchment area of the river and treated sewage is released into the Klein Modder River. This study determined seasonal and spatial patterns in the system as well as the continued influence that Botshabelo's treated sewage outflow has on the water quality of the river. Box-Jenkins plots were used in every sample point in this study, as well as, plots of the relations between different sample points. It was determined that the Modder River and Klein Modder River follow distinctive seasonal patterns in terms of algal growth and physical factors. There were periods when the waters of the Modder River and Klein Modder River are of acceptable quality. However, outflows from Botshabelo have a detrimental effect on the water quality in terms of nutrient concentrations and algal biomass. The inflow of the Klein Modder River into the Modder River caused an average of 112% increase in phosphate-phosphorus (PO4-P), 171% increase in nitrate-nitrogen (NO3-N) and a 50% increase in chlorophyll- a concentration in the Modder River. The long-term detrimental effect of Botshabelo on the system can clearly be seen by comparing predicted nutrient increases with measured values.

2. KING TALAL DAM AND DATA COLLECTION

This chapter is divided into four parts. The first part is about the philosophy of King Talal Dam construction. The second part is about the water supplier of King Talal Dam. The third part is about water characteristics, and the last part is about data collection.

2.1 Philosophy of King Talal Dam Construction.

Since water is the main factor in agricultural production, and the main factor for extension in lands reclamation and since water resources are very limited in Jordan because of very low average of rainfall, it was necessary to think about ways of collecting surface water by dams to be constructed downstream rivers and valleys to be distributed to farms when required. In 1977 it was agreed to construct King Talal Dam as the first trial on Zarka River with a capacity of 56 MCM, which was increased to 86 MCM in 1988, 78 MCM of which were used for irrigation purposes (Salameh, 1996). The height of the dam was 108 m , the catchment area was $3157 \mathrm{Km}^{2}$ with a population of 2.439 million Capita (1996). This dam is considered the most important water project in Jordan. The water stored in it is used for irrigation of wide areas in the Ghor, the area irrigated by water coming from the dam mixed with water coming by King Abdullah channel is estimated by 100,000 donums. (RSS, 1988-2001).

Figure (1) shows the site of King Talal Dam, the borders of the catchment area and the branches that supply the lake behind the dam. The main branches

Figure (1): King Talal's catchment area and branches. (RSS reports. 1988 till 2001)

are Al Zarka River (main supplier), Al Dhlale Valley that pours in Al Zarka River, and Rumaimeen Valley that pours directly in the lake. The percent of water drained from Al Zarka River to the lake of the river is about 90%, while for Rumaimeen Valley it is about 10%. Population of the catchment area is about half of the kingdom population, which is distributed in Amman, Zarka, Sweileh, Rusaifeh, Baka'a and Jerash with several villages around these cities. (RSS, 1988-2001).

2.2 Water Suppliers for King Talal Reservoir:

The only two water suppliers for King Talal reservoir are Zarka River and Wadi Rumaimeen.

2.2.1 Zarka River

It is a river coming from the east directly to the lake of the dam (see figure 2). Zarka River is the main water branch of King Talal Reservoir. The water in Zarka River consists of the water in Wadi Dhuliel, the effluent from Al Samra, and Jerash Wastewater Treatment plant (see Figure 2). In addition to the treated and untreated effluents, which are drained from industrial factories and farms located on the river's banks. The underground water and rainfall affect water quality of this River.

2.2.2 Wadi Rumaimeen

It is a wadi coming from the south directly to the lake of the dam (see figure 2). This wadi was connected in 1988 to increase the capacity of the lake and to study the effect of AL Baka'a waste water plant on the quality of the

Figure (2): King Talal's reservoir inlets and outlets. (RSS reports. 1988 till 2001)
water in this valley and finally on the water in the lake and the springs water extending around this wadi that supply it with extra water.

2.3 Water Characteristics

There are three characteristics of water, these characteristics are: physical, chemical, and biological. According to these three characteristics, one can determine the usage of water. Water usage is generally divided into four categories: (1) domestic (water used for sanitary and general purposes, (2) industrial (no domestic purposes), (3) public service (water used for irrigation, fire fighting, and industrial system), (4) unaccounted for system losses and leakage. In this section, the water characteristics will be discussed for each of the five properties.

2.3.1 Total suspended solids (TSS):

TSS has physical characteristics; the term of the total suspended solids refers to non-filterable residue that is retained on a glass-fiber disk after filtration of a sample of water or wastewater. A measured portion of a sample is drown through a glass-fiber filter, retained in a funnel, applying a vacuum to the section flask under the filter with dump suspended solids adhering to the surface is transferred from the filtration apparatus to an aluminum or stainless steel planked as a support. After drying at 103° $105^{\circ} \mathrm{C}$ in an oven the filtered dried suspended solids in milligrams divided by the volume of the sample by liters gives the total suspended solids expressed by milligrams per liters. (Viessman, 1985).

The total suspended solids fraction consists of the particulate matter with an approximate size range from 0.001 to $1 \mu \mathrm{~m}$. The dissolved solids consist of both organic
and inorganic molecules and ions that are present in true solution in water (Metcalf and eddy, 1991).

2.3.2 Biochemical oxygen demand (BOD):

BOD has chemical characteristics. Biochemical oxygen demand is the quantity of oxygen used in the aerobic stabilization of wastewater and polluted waters. The standard 5-days BOD value is commonly used to measure the amount of pollution in wastewater, to evaluate the efficiency of treatment by measuring oxygen demand remaining in the effluent, and to determine the amount of organic pollutant in surface waters (Viessman, 1985).

Laboratory analyses of wastewaters and polluted waters are considered using 300 ml of BOD bottle incubated at a room temperature of $20^{\circ} \mathrm{C}$. a measured portion is placed in the BOD bottle, then the bottle is filled with aerated dilution water containing phosphate buffer and inorganic nutrients. The sample is then diluted with distilled water, when the sample contains a large population of microorganisms (untreated wastewater, for example) seeding is not necessary. If required, the dilution water is seeded with a bacterial culture that has been acclimated with a bacterial matter or other materials that may be present in the wastewater. Readings are taken for five days or more, the biochemical oxygen demand exerted by a diluted wastewater progress approximately by first-order kinetics. Within 5 days, the oxidation of the carbonaceous organic matter is about 60-70 percent completion. (Metcalf and eddy, 1991).

It should be noted that the initial depletion of dissolved oxygen is the result of carbonaceous oxygen demand resulting from organic matter degradation. If presented in sufficient numbers, nitrifying bacteria exerts a secondary oxygen demand by lags several days behind the start of carbonaceous oxygen demand. (Viessman, 1985).

2.3.3 Chemical oxygen demand (COD):

COD has chemical characteristics, the chemical oxygen demand test is used to measure the content of organic matter of both wastewater and natural matter. The oxygen equivalent to the organic matter that can be oxidized is measured by using a strong chemical oxidized agent in an acidic medium. The test must be performed at an elevated temperature. A catalyst (silver sulfate) is required to aid the oxidation of certain classes of organic compounds. The COD test is also used to measure the organic matter in industrial and municipal wastes that contain compounds that are toxic to biological life. The value of COD is higher than BOD and that is because there are more compounds that can be chemically oxidized than biologically. For many types of wastes, it can be correlated COD with BOD, and this is useful because the value of COD can be determined in 3 hours, where as the value of BOD can be determined in 5 days. (Metcalf and Eddy, 1991).

2.3.4 Total phosphorus (T-P):

T-P has chemical characteristics. It is essential for the growth of algae and other biological organisms and that is because of noxious algal blooms that occur in surface waters, so there is presently much interest in controlling the amount of phosphorus compounds that enter surface waters in domestic and industrial waste discharges of natural run off. (Metcalf and Eddy, 1991)

2.3.5 Total nitrogen (T-N):

T-N has chemical characteristics, and it is essential for the growth of the biological characteristics; such as: Protista and plants. This happens because nitrogen is an essential factor in building the synthesis of protein.

In nature the nitrogen is presented in several ways, in water and wastewater, it is combined in proteinacous matter and urea. Nitrogen data will be required to evaluate the treatability of wastewater by biological processes, also the amount of nutrients should be controlled because of the algal growth. (Metcalf and eddy, 1991).

2.4 Data Collection:

The data collected in this thesis was collected from reports made by Jordan Valley Authority in cooperation with Royal Scientific Society. These reports contained monthly information covering the period from January 1988 till December 2000 (156 months) for two sights: Zarka River and Samra Waste water treatment plant. The information includes the monthly analysis of quality of the flow entering the dam through AL Zarka River and Samra Waste Water Treatment Plant effluent. The data contains the concentrations of total suspended solids in (mg / l), biochemical oxygen demand in (mg/l), chemical oxygen demand (mg / l), total phosphorus (mg / l), total nitrogen (mg / l), and finally the rate of flow (MCM/month).

Table 1: Data of water entering King Talal Reservoir from Zarka River

YEAR	MONTH	Zarka River Flow MCM/month	TSS mg/l	$\begin{gathered} \text { BOD5 } \\ \text { mg/l } \end{gathered}$	$\begin{aligned} & \text { COD } \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { T-N } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$
1988	January	10.202	227.00	47.00	118.00	3.00	52.70
	February	31.634	42.00	10.00	37.00	2.20	21.50
	March	10.411	34.00	6.00	16.00	2.70	27.30
	April	5.033	41.00	34.00	96.00	4.50	20.20
	May	5.306	72.00	36.00	119.00	4.90	23.70
	June	4.43	83.00	33.00	128.00	5.20	20.20
	July	3.962	103.00	35.00	123.00	5.90	13.90
	August	3.325	60.00	17.00	79.00	6.10	11.00
	September	3.2	55.00	36.00	103.00	7.10	19.90
	October	3.306	47.00	30.00	94.00	6.50	27.10
	November	3.664	61.00	26.00	155.02	5.80	42.90
	December	16.348	72.00	36.00	103.00	6.70	34.60
	Monthly Average	8.402	72.34	24.40	76.91	4.15	27.64
	Total	100.824	72.34	24.40	76.91	4.15	27.64
1989	January	7.247	83.00	12.00	51.00	3.10	23.21
	February	5.101	27.00	11.50	63.99	5.05	30.02
	March	6.825	30.00	22.00	58.50	5.70	35.75
	April	4.829	36.50	14.50	64.50	5.67	36.93
	May	3.87	59.00	37.00	127.51	6.50	33.57
	June	2.878	55.00	25.00	107.50	5.89	20.21
	July	3.298	60.49	25.00	103.98	8.10	27.10
	August	3.15	54.01	18.50	97.51	6.54	22.13
	September	2.967	52.00	16.00	72.00	11.80	28.24
	October	2.946	64.99	16.00	87.49	8.36	32.96
	November	3.555	74.99	18.00	82.49	8.97	45.46
	December	4.953	45.50	21.00	91.50	8.60	51.94
	Monthly Average	4.302	52.58	19.07	78.99	6.55	32.75
	Total	51.619	52.58	19.07	78.99	6.55	32.75
1990	January	7.539	35.00	13.00	64.00	8.10	47.40
	February	7.559	43.00	19.00	68.00	8.10	29.00
	March	7.901	40.00	15.00	56.00	5.70	30.70
	April	5.073	36.00	22.00	80.00	6.54	35.20
	May	3.859	54.00	27.00	74.01	8.10	32.50
	June	3.176	69.99	36.00	112.99	10.40	31.40
	July	3.607	50.00	33.00	99.99	8.50	25.90
	August	3.568	91.99	25.00	100.99	8.00	22.80
	September	3.2	93.99	30.00	112.98	9.90	19.10
	October	3.528	125.00	42.00	116.00	10.20	32.50
	November	3.789	92.00	36.00	119.99	10.10	40.80
	December	4.269	82.00	39.00	157.00	11.50	43.30
	Monthly Average	4.756	60.75	25.33	89.46	8.39	33.51
	Total	57.066	60.76	25.33	89.47	8.39	33.52
1991	January	8.355	79.00	47.00	132.00	10.50	39.40
	February	6.941	20.00	29.00	125.00	8.13	36.10
	March	8.773	47.00	11.00	54.00	3.70	35.00
	April	4.061	51.00	28.00	78.00	7.45	29.00

Cont. Table 1:Data of water entering King Talal Reservoir from Zarka River.

YEAR	MONTH	Zarka River Flow MCM/month	TSS mg/l	$\begin{gathered} \text { BOD5 } \\ \text { mg/l } \end{gathered}$	$\begin{gathered} \text { COD } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \mathrm{T}-\mathrm{N} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$
1991	May	3.871	36.00	30.00	88.01	8.70	27.70
	June	3.244	38.00	26.00	95.00	5.90	21.30
	July	2.86	57.99	21.00	88.98	7.78	19.50
	August	2.901	56.01	21.00	116.01	7.58	28.00
	September	2.841	72.50	25.17	126.87	8.51	27.19
	October	3.22	85.01	44.01	92.01	9.25	31.00
	November	3.935	104.99	40.00	115.99	10.80	41.00
	December	33.86	28.00	11.00	35.00	4.30	39.50
	Monthly Average	7.073	45.36	22.06	74.23	6.30	35.27
	Total	84.882	45.36	22.02	74.21	6.30	35.27
1992	January	24.598	59.00	23.00	51.00	3.40	17.00
	February	68.544	65.00	19.00	59.00	2.05	19.00
	March	29.245	71.00	15.00	67.00	0.70	21.00
	April	15.179	59.00	21.00	60.00	3.70	28.80
	May	10.266	89.00	25.00	73.00	4.60	27.00
	June	8.693	118.00	28.00	85.00	5.50	25.20
	July	6.909	102.99	33.00	85.99	6.40	21.25
	August	6.596	86.98	36.99	86.98	7.30	17.30
	September	6.187	90.00	24.00	93.00	6.84	26.20
	October	6.537	92.99	11.00	98.99	6.37	35.00
	November	8.206	75.00	13.00	77.00	6.29	26.80
	December	14.78	56.00	15.00	54.00	6.20	18.50
	Monthly Average	17.145	71.50	20.18	65.50	3.48	21.45
	Total	205.737	71.50	20.15	65.51	3.48	21.45
1993	January	14.694	56.00	15.00	54.00	6.20	18.50
	February	11.175	54.00	22.00	84.00	5.04	27.51
	March	9.936	57.00	33.00	91.00	5.67	27.70
	April	8.196	59.00	43.00	97.00	6.30	27.88
	May	8.179	65.00	38.00	116.01	7.77	30.55
	June	8.385	70.00	33.00	135.01	9.24	33.22
	July	5.015	74.00	44.00	116.00	9.62	35.76
	August	5.136	76.99	54.00	96.99	10.00	38.29
	September	4.887	86.00	47.00	129.01	10.91	40.71
	October	5.318	93.99	40.00	160.99	11.82	43.12
	November	7.513	81.00	45.00	122.00	9.96	41.90
	December	6.992	67.00	50.00	83.00	8.10	40.68
	Monthly Average	7.952	66.64	35.21	100.35	7.79	31.59
	Total	95.427	66.63	35.23	100.35	7.79	31.59
1994	January	9.827	47.00	45.00	86.00	7.16	38.60
	February	8.346	26.00	39.00	88.00	6.21	36.52
	March	8.184	60.00	28.00	90.00	6.10	40.62
	April	5.201	37.00	58.00	127.00	6.81	37.51
	May	4.561	63.99	42.00	127.99	12.61	49.55
	June	4.017	67.00	52.00	123.00	13.96	48.20
	July	3.344	82.99	60.99	120.98	13.37	48.81
	August	3.803	80.00	63.00	149.01	12.99	47.46
	September	3.395	93.99	47.00	115.99	14.71	50.20

Cont. Table 1:Data of water entering King Talal Reservoir from Zarka River

YEAR	MONTH	Zarka River Flow MCM/month	$\begin{gathered} \text { TSS } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { BOD5 } \\ \text { mg/l } \end{gathered}$	$\begin{aligned} & \text { COD } \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \mathrm{T}-\mathrm{N} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$
1995	October	4.844	79.00	28.00	166.00	12.90	53.74
	November	26.245	22.00	45.00	133.00	5.89	40.27
	December	18.312	37.00	15.00	39.00	5.98	36.11
	Monthly Average	8.34	44.58	38.90	104.20	7.91	41.21
	Total	100.077	44.58	38.90	104.20	7.91	41.21
1996	January	5.989	62.95	92.00	101.02	8.01	52.10
	February	8.115	60.01	32.04	83.06	7.02	37.09
	March	7.693	50.96	41.99	88.00	8.71	47.06
	April	6.653	41.94	55.01	94.99	8.27	47.35
	May	6.568	33.95	61.97	103.99	10.66	50.24
	June	5.197	72.93	50.03	113.91	11.55	47.91
	July	5.07	111.05	54.04	140.04	13.41	69.23
	August	5.117	86.97	45.93	154.97	14.27	39.48
	September	4.785	84.01	51.62	174.92	3.34	50.37
	October	4.766	71.97	45.95	147.08	12.38	58.54
	November	5.165	70.09	18.97	143.08	11.62	49.76
	December	6.413	79.06	36.96	104.01	10.92	55.98
	Monthly Average	5.961	66.60	48.65	116.09	9.73	49.82
	Total	71.532	66.54	48.64	116.17	9.80	49.75
1996	January	11.057	97.04	38.98	114.05	5.06	46.40
	February	6.058	32.02	47.05	117.04	8.58	44.24
	March	9.268	33.99	43.05	114.05	10.36	49.74
	April	5.624	54.94	65.08	91.93	9.42	55.30
	May	5.566	169.96	63.06	127.02	10.96	71.69
	June	4.516	81.93	54.03	110.05	11.07	65.54
	July	4.072	52.06	33.89	107.07	8.10	54.52
	August	3.807	112.95	69.87	127.92	11.56	79.33
	September	4.242	151.11	74.02	181.05	13.44	68.84
	October	3.688	75.11	33.08	120.93	11.12	70.23
	November	7.934	136.00	95.03	275.02	15.00	76.76
	December	6.859	73.04	80.04	188.07	10.93	63.27
	Monthly Average	6.058	87.32	57.94	142.46	10.07	60.09
	Total	72.691	87.30	58.03	142.45	10.14	60.06
1997	January	18.864	127.01	125.00	231.98	12.72	66.05
	February	11.551	70.04	41.04	72.03	8.57	43.98
	March	8.071	187.96	85.00	223.02	8.67	55.88
	April	5.275	73.93	68.06	115.07	6.26	37.54
	May	5.45	55.96	44.04	79.08	7.89	48.26
	June	4.826	98.01	77.08	156.03	9.12	63.41
	July	4.863	92.95	56.96	104.05	9.05	49.15
	August	4.839	75.02	36.99	93.20	11.57	61.38
	September	4.674	65.90	40.01	90.07	12.84	57.55
	October	4.609	70.95	31.89	116.08	14.10	62.05
	November	6.854	106.07	46.98	147.07	10.50	60.84
	December	10.711	43.97	135.00	302.96	12.32	52.56
	Monthly Average	7.549	94.32	77.76	166.38	10.60	55.64
	Total	90.587	94.26	77.78	166.39	10.56	55.65

Cont. Table 1:Data of water entering King Talal Reservoir from Zarka River

YEAR	MONTH	Zarka River Flow MCM/month	TSS mg/l	$\begin{gathered} \text { BOD5 } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { COD } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { T-N } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$
1998	January	10.245	52.03	29.97	68.03	7.81	53.29
	February	6.073	53.02	30.96	126.96	9.22	45.94
	March	9.734	66.98	36.98	99.96	8.32	51.78
	April	5.943	37.02	25.07	88.00	11.44	47.96
	May	3.661	39.06	31.96	93.96	8.47	57.36
	June	3.45	6.96	57.97	184.93	9.86	53.62
	July	3.777	96.90	45.01	88.96	12.71	54.28
	August	4.079	71.10	57.12	103.95	10.05	46.58
	September	4.394	68.96	38.92	94.90	9.33	53.03
	October	4.518	71.93	59.10	106.91	10.18	57.55
	November	4.428	63.01	51.94	111.11	9.49	65.72
	December	4.5	48.00	47.11	152.00	11.78	76.89
	Monthly Average	5.4	56.67	40.19	104.63	9.63	54.63
	Total	64.802	56.68	40.18	104.67	9.58	54.54
1999	January	7.318	40.04	40.99	203.06	12.16	66.41
	February	9.728	39.99	24.98	86.04	8.53	66.51
	March	5.202	33.06	62.09	104.00	8.84	68.63
	April	4.201	74.98	64.03	194.00	12.62	77.60
	May	4.798	67.94	61.90	255.94	12.71	66.07
	June	3.961	89.88	77.00	268.11	14.64	62.11
	July	3.14	80.89	42.04	230.89	11.46	50.32
	August	3.317	106.12	56.07	177.87	9.04	61.80
	September	3.529	79.91	30.04	207.14	14.45	54.41
	October	4.37	97.03	30.89	102.97	13.73	59.50
	November	4.68	64.10	35.90	176.07	16.03	72.22
	December	5.551	--	43.06	206.99	21.80	79.45
	Monthly Average	4.983	63.21	45.15	174.59	12.84	66.43
	Total	59.795	63.18	45.20	174.55	12.76	66.43
2000	January	12.228	44.00	35.98	180.98	12.43	63.13
	February	6.552	58.00	39.07	219.02	8.55	67.00
	March	7.031	33.00	22.05	164.98	9.53	62.58
	April	4.31	54.06	57.08	229.93	12.76	77.49
	May	4.226	78.09	57.97	136.06	12.07	79.51
	June	3.971	67.99	45.08	184.08	11.08	57.92
	July	3.651	87.92	30.13	205.97	19.99	64.64
	August	3.275	105.95	37.86	258.93	15.57	59.85
	September	3.355	85.84	34.87	298.96	12.22	64.68
	October	7.113	85.06	58.06	162.94	13.07	73.67
	November	4.384	57.03	18.93	135.95	14.14	69.34
	December	8.792	68.02	40.04	226.00	20.02	79.85
	Monthly Average	5.741	63.75	39.54	195.26	13.41	68.63
	Total	68.888	63.76	39.47	195.26	13.36	68.66

Table 2: Data of Samra Wastewater Treatment Plant Effluent

YEAR	MONTH	Samra WWTP flow MCM/month	TSS mg/l	$\begin{gathered} \text { BOD5 } \\ \text { mg/l } \end{gathered}$	$\begin{gathered} \text { COD } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \mathrm{T}-\mathrm{N} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$
1988	January	1.88	184.0	127.0	338.9	13.0	123.2
	February	2.30	168.0	144.0	391.1	13.0	99.2
	March	2.18	157.0	126.0	343.0	13.0	84.2
	April	1.79	180.0	142.0	366.0	18.0	76.2
	May	1.68	204.1	173.0	351.1	18.5	99.2
	June	1.87	210.0	114.0	372.0	8.0	95.2
	July	2.32	190.0	112.0	348.9	19.0	68.2
	August	2.07	209.0	126.0	339.1	15.0	79.2
	September	2.15	195.0	157.0	355.9	17.9	68.2
	October	2.17	191.0	162.0	358.0	16.5	89.3
	November	1.99	193.0	132.0	298.0	17.4	79.2
	December	2.50	195.0	135.0	354.9	17.0	88.2
	Monthly Average	2.07	189.2	137.1	351.8	15.6	86.9
	Total	24.88	2270.3	1644.8	4221.1	186.8	1043.4
1989	January	2.27	126.0	102.0	344.0	17.3	95.2
	February	1.96	105.0	124.0	420.1	17.3	102.2
	March	2.33	145.0	145.0	455.0	17.6	106.2
	April	2.23	172.0	118.0	340.0	17.1	98.2
	May	2.20	196.0	62.0	324.0	18.4	98.2
	June	2.06	137.0	31.0	275.0	18.9	90.5
	July	2.26	130.0	69.0	276.0	16.0	93.9
	August	2.54	144.0	64.0	263.0	13.8	95.5
	September	2.08	170.0	93.1	293.0	16.0	91.6
	October	2.19	203.0	64.0	350.0	13.0	103.1
	November	2.25	221.0	107.0	335.0	21.3	109.3
	December	2.40	172.0	95.0	332.0	8.6	112.0
	Monthly Average	2.23	160.4	89.5	333.2	16.2	99.8
	Total	26.76	1924.9	1074.4	3998.5	194.2	1197.4
1990	January	2.45	137.0	123.0	346.0	15.0	108.0
	February	2.29	109.0	154.0	375.0	12.0	100.0
	March	2.39	124.0	134.0	361.0	15.8	89.0
	April	2.81	160.0	110.0	345.0	17.2	94.0
	May	2.46	189.0	52.0	230.0	19.2	92.0
	June	2.41	173.0	98.0	289.0	19.0	93.5
	July	2.74	147.0	74.0	282.0	16.4	102.0
	August	2.46	203.0	88.0	348.0	18.5	86.8
	September	2.41	198.0	94.0	256.0	22.6	98.8
	October	2.40	211.0	112.0	255.0	22.8	97.1
	November	2.47	242.0	111.0	352.0	20.6	102.0
	December	2.36	232.0	112.0	416.0	24.0	111.0
	Monthly Average	2.47	176.9	104.6	320.7	18.6	97.8
	Total	29.64	2122.4	1254.8	3848.7	222.8	1173.7
1991	January	2.67	246.8	146.8	412.3	32.8	123.1
	February	2.46	56.5	81.9	353.2	23.0	102.0
	March	2.70	152.8	35.8	175.5	12.0	113.8

Cont. Table 2: Data of Samra Wastewater Treatment Plant Effluent

YEAR	MONTH	Samra WWTP flow MCM/month	$\begin{gathered} \text { TSS } \\ \text { mg/l } \end{gathered}$	$\begin{aligned} & \text { BOD5 } \\ & \text { mg/l } \end{aligned}$	$\begin{gathered} \text { COD } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathbf{l} \end{gathered}$	$\begin{gathered} \text { T-N } \\ \text { mg/l } \end{gathered}$
1991	April	2.36	87.8	48.2	134.3	12.8	49.9
	May	2.50	55.7	46.4	136.0	13.4	42.8
	June	2.64	46.8	32.0	116.9	7.3	26.2
	July	2.41	68.7	24.9	105.5	9.2	23.1
	August	2.53	64.3	24.1	133.2	8.7	32.2
	September	2.43	84.7	29.4	148.2	9.9	31.8
	October	2.40	114.2	59.1	123.6	12.4	41.7
	November	2.39	172.6	65.8	190.7	17.8	67.4
	December	2.85	333.2	130.9	416.4	51.2	470.0
	Monthly Average	2.53	126.9	61.6	207.7	18.0	98.7
	Total	30.34	1523.1	739.2	2491.8	216.0	1184.3
1992	January	3.24	70.0	134.0	323.0	14.9	70.0
	February	3.15	78.0	149.0	328.0	13.0	82.1
	March	3.29	73.0	177.0	289.0	13.9	51.0
	April	3.26	144.0	117.0	367.0	19.6	84.4
	May	3.35	218.0	123.0	424.0	21.0	87.2
	June	3.21	221.0	106.0	391.0	21.3	76.8
	July	3.36	205.0	99.0	338.0	20.9	73.1
	August	3.35	169.0	83.0	291.0	17.9	77.1
	September	3.25	146.0	84.0	250.0	19.0	75.2
	October	3.40	177.0	87.0	303.0	18.6	81.5
	November	3.16	167.0	135.0	320.0	17.8	78.0
	December	3.36	135.0	112.0	372.0	16.9	88.5
	Monthly Average	3.28	150.2	117.2	333.0	17.9	77.1
	Total	39.38	1803.0	1406.0	3996.0	214.8	924.9
1993	January	3.45	98.0	169.0	404.0	17.1	80.0
	February	3.10	78.0	200.0	448.0	15.0	79.0
	March	3.41	91.0	248.0	501.0	18.6	87.0
	April	3.26	140.0	188.0	500.0	21.3	93.6
	May	3.47	187.0	134.0	440.0	23.0	93.4
	June	3.23	182.0	92.0	339.0	22.6	80.6
	July	3.34	183.0	118.0	325.0	21.0	75.4
	August	3.36	167.0	117.0	341.0	23.7	75.6
	September	3.26	267.0	106.0	288.0	19.6	73.4
	October	3.38	174.0	96.0	324.0	19.9	75.0
	November	3.32	146.0	133.0	313.0	18.8	79.0
	December	3.46	107.0	134.0	398.0	20.0	90.0
	Monthly Average	3.34	151.7	144.6	385.1	20.0	81.8
	Total	40.03	1820.0	1735.0	4621.0	240.6	982.0
1994	January	3.39	79.0	177.0	428.0	20.7	94.4
	February	2.93	66.0	162.0	423.0	17.8	90.0
	March	3.19	111.0	102.0	398.0	18.8	76.4
	April	3.07	213.0	117.0	390.0	19.7	78.1
	May	3.18	164.0	85.0	398.0	20.5	77.2
	June	3.07	193.0	90.0	331.0	21.3	80.6
	July	3.42	169.0	41.0	311.0	20.7	79.1

Cont. Table 2: Data of Samra Wastewater Treatment Plant Effluent

YEAR	MONTH	Samra WWTP flow MCM/month	$\begin{gathered} \text { TSS } \\ \text { mg/l } \end{gathered}$	$\begin{aligned} & \text { BOD5 } \\ & \text { mg/l } \end{aligned}$	$\begin{gathered} \text { COD } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	T-P mg/l	$\begin{aligned} & \mathrm{T}-\mathrm{N} \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$
1994	August	3.41	144.0	40.0	324.0	20.0	71.1
	September	3.50	143.0	68.0	289.0	19.8	76.5
	October	3.73	149.0	39.0	379.0	19.6	76.8
	November	3.69	134.0	93.0	410.0	17.6	76.4
	December	4.02	103.0	117.0	292.0	15.5	76.1
	Monthly Average	3.38	139.0	94.2	364.4	19.3	79.4
	Total	40.61	1668.0	1131.0	4373.0	232.0	952.7
1995	January	4.11	62.1	134.9	322.9	15.6	81.1
	February	3.70	68.9	104.9	410.1	15.7	93.0
	March	4.13	98.1	194.9	409.9	17.9	90.1
	April	3.83	136.0	120.1	402.9	19.6	89.0
	May	3.67	157.0	107.9	340.1	19.1	85.0
	June	3.49	158.1	56.0	447.1	18.4	39.3
	July	3.43	153.1	44.9	313.1	19.2	79.0
	August	3.44	167.0	63.9	340.0	20.0	78.1
	September	3.47	150.0	45.9	242.9	19.6	72.1
	October	3.45	145.9	67.0	291.0	18.9	82.1
	November	3.58	139.0	55.9	360.0	17.9	86.4
	December	3.58	75.1	137.9	415.1	17.0	89.1
	Monthly Average	3.66	125.9	94.5	357.9	18.2	80.4
	Total	43.86	1510.3	1134.2	4295.2	218.9	964.4
1996	January	4.27	70.1	150.0	462.0	15.5	99.1
	February	3.98	72.1	193.1	423.0	13.8	92.9
	March	4.29	74.1	161.9	468.1	16.3	98.1
	April	3.99	79.0	193.1	522.9	18.6	103.1
	May	3.83	109.9	216.1	539.9	18.8	108.0
	June	3.64	120.0	132.9	414.1	18.9	112.0
	July	3.59	145.0	54.0	341.0	18.4	106.1
	August	3.61	140.9	140.0	424.0	17.5	100.1
	September	3.62	164.0	138.0	401.2	18.8	104.1
	October	4.29	194.1	103.9	364.0	20.0	107.9
	November	3.73	106.9	266.1	694.0	20.6	110.9
	December	3.75	102.9	330.9	790.1	21.1	113.1
	Monthly Average	3.88	114.9	173.3	487.0	18.2	104.6
	Total	46.60	1379.0	2080.1	5844.5	218.2	1255.4
1997	January	3.72	243.1	182.0	583.8	19.1	109.0
	February	3.38	197.0	365.9	621.9	16.0	104.0
	March	3.74	96.0	249.9	604.9	16.0	102.1
	April	3.14	114.0	308.1	584.9	17.8	107.0
	May	3.87	129.9	205.0	492.9	18.1	112.1
	June	3.79	185.1	156.1	452.1	19.0	101.9
	July	4.77	139.0	88.0	250.1	17.0	70.0
	August	4.28	140.0	114.1	225.1	18.0	76.0
	September	4.02	153.0	98.0	227.1	19.4	97.0
	October	4.27	144.9	82.1	257.9	20.4	80.9
	November	4.17	94.1	79.9	271.0	20.6	71.1

Cont. Table 2: Data of Samra Wastewater Treatment Plant Effluent

YEAR	MONTH	$\begin{aligned} & \text { Samra WWTP } \\ & \text { flow } \\ & \text { MCM/month } \end{aligned}$	TSS mg/l	$\begin{aligned} & \text { BOD5 } \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	$\begin{aligned} & \text { COD } \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	T-N mg/l
1997	December	4.70	64.0	186.1	265.0	18.9	90.0
	Monthly Average	3.99	141.7	176.3	403.1	18.4	93.4
	Total	47.83	1700.1	2115.2	4836.7	220.4	1121.1
1998	January	4.87	61.0	229.0	324.9	17.9	94.7
	February	3.83	77.1	176.9	355.9	18.6	98.0
	March	4.72	111.9	177.0	382.0	19.3	109.4
	April	4.30	78.0	149.9	274.0	18.4	93.4
	May	4.58	105.9	161.0	318.0	19.0	93.5
	June	4.46	121.0	138.0	285.9	22.9	99.0
	July	4.63	128.1	94.0	252.9	21.0	93.1
	August	4.36	145.0	89.0	208.1	17.2	128.9
	September	4.92	134.1	64.0	329.9	27.0	130.0
	October	4.80	140.9	89.1	305.0	14.4	95.5
	November	4.40	119.0	67.9	265.9	14.1	100.1
	December	4.65	94.9	111.9	384.9	19.8	107.0
	Monthly Average	4.54	109.7	129.0	307.3	19.1	103.6
	Total	54.51	1316.9	1547.8	3687.5	229.4	1242.6
1999	January	4.61	47.9	164.9	399.0	21.3	108.9
	February	4.07	76.1	107.0	318.9	18.4	105.1
	March	4.56	56.0	126.4	478.1	14.9	106.9
	April	4.24	96.0	91.1	521.1	25.0	118.0
	May	4.35	111.1	80.0	327.0	20.0	106.3
	June	4.17	124.9	82.0	247.9	22.1	99.3
	July	4.44	105.0	114.9	454.9	24.1	93.5
	August	4.36	142.0	75.0	253.0	20.6	97.9
	September	4.33	112.0	70.9	382.1	14.6	97.0
	October	4.66	129.0	86.1	258.9	20.0	100.5
	November	4.45	115.1	102.9	351.1	23.6	115.1
	December	4.70	75.9	209.9	364.7	20.0	110.8
	Monthly Average	4.41	99.3	109.3	363.1	20.4	104.9
	Total	52.93	1191.1	1311.2	4356.8	244.5	1259.2
2000	January	4.99	67.0	121.9	427.1	16.2	103.1
	February	4.22	54.9	114.1	339.0	18.0	91.1
	March	4.55	49.0	152.1	386.1	--	--
	April	4.66	117.1	110.0	349.9	21.1	116.2
	May	4.71	111.1	139.1	499.0	--	--
	June	4.40	138.1	--	303.9	20.9	102.7
	July	4.29	151.1	97.0	354.9	--	--
	August	4.33	184.9	54.0	256.9	21.9	102.3
	September	4.53	144.0	81.0	336.9	--	--
	October	4.59	132.9	62.1	269.1	18.3	112.2
	November	4.50	115.9	108.0	416.9	--	--
	December	4.98	109.0	137.1	453.0	22.1	81.3
	Monthly Average	4.56	114.6	106.9	366.1	19.8	101.3
	Total	54.75	1375.0	1283.3	4393.0	237.4	1215.2

3. STATISTICAL ANALYSIS

This Chapter is divided into five sections. The first section about exploration of data, the second section about equations needed for forecasting, the third section about the statistical softwares, the fourth section about the methodology, and the fifth section is about the analysis of data for the variables in king Talal Reservoir and it's relation with AL Samra WWTP.

3.1. Exploration of Data:

The first step of time series analysis is to plot the data in a scatter diagram. Graphic presentation of statistical data gives a pictorial effect. The collected data will generally be complex; it will be very difficult to understand the importance of collected data. Graphic presentation makes the data easy to be understood and grasped. Also it shows if there is any trend that maybe present and the direction in which the trend may change. (Pillai and Bagavalthi, 1997).

The plot of time series contains fluctuations, which means that it is hard to bring order into seemingly hazard movement of the data through time. Nevertheless, in making simplifying assumptions, we can identify, explain and measure fluctuations that appear in the time series. The fluctuations that appear in the plot are due to four basic types of variations: secular trend, seasonal, cyclic and irregular variations (A. Sakakini, 2001). The variation in the data will lead to outlier. In general, an outlier is an observation that is far from the rest of the data.

3.2. Equations Needed in Forecasting:

Through applying mathematical models to the past data, one can analyze the data through mathematical models so that future forecasting of the data can be estimated. The mathematical models used in this thesis were:

3.2.1 Normality of data

3.2.1.1. Weibull distribution:

Is one of the most efficient formulas for computing plotting positions for unspecified distributions, the mathematical formula of Weibull Distribution is:

$$
\begin{equation*}
P=\frac{m}{n+1} \tag{1}
\end{equation*}
$$

Where:
P: The estimated probability of an X value
m: The Rank
n : The Number of years of record

The technique in all cases is to arrange the data in increasing or decreasing order of magnitude and to assign order number m to the rank values. (Viessman and Lewis, 1996).

3.2.1.2. coefficient of variation process (COV)

The coefficient of variation is often used to describe the relative amount of variation in a population. The sample estimate for the coefficient of variation is defined as:

$$
\begin{equation*}
\mathrm{COV}=\frac{\mathrm{S}}{\frac{\mathrm{X}}{-}} \tag{2}
\end{equation*}
$$

Where:
COV: The coefficient of variation (dimensionless)

S : Standard deviation
 X : The mean

The coefficient of variable (COV) test is the simplest test available to determine whether the data can be characterized by normal distribution or not (McBean and Rovers, 1998).

3.2.1.3. Kurtosis process:

The fourth moment about the mean is the kurtosis, which is a measure of the peakness of the distribution. The sample estimate of the Kurtosis is obtained from the following equation:

$$
\begin{align*}
& K=\frac{n^{2} \sum_{i=1}^{n}\left(X_{i}-\overline{X^{2}}\right)}{(n-1)(n-2)(n-3)} \tag{3}\\
& C_{k}=\frac{K}{S^{4}}-3 \tag{4}
\end{align*}
$$

Where:
C_{k} : Coefficient of Kurtosis.

K : The fourth moment about the mean.
n : The number of data.
X_{i} : Observed data.

X : Mean.

S : Standard deviation. (McBean and Rovers, 1998)

Kurtosis concerns the relative concentration of values in the center of the distribution as compared to the tails. In term of this property, three types of distributions can be defined: leptokurtic, mesokurtic and platykutric. Leptokurtic distribution is characterized by a prominent peak and by a relatively large proportion of values falling in the tail. A mesokurtic distribution is one, which the values are mainly located in the center of the distribution. A platykutric distribution is characterized that the peak is relatively flat and very few values appear in the tails (Levine, Ramsey and Smidt, 2001)

3.2.1.4. Shapiro-Wilk test

The Shapiro-Wilk "W' test is another statistical goodness of fit test that performs for a small sample (3-50). The steps for calculating W are:

A- Order the sample data

B- Compute a weighted sum (b) of the differences between the most extreme observations

$$
\begin{equation*}
b=\sum_{i=1}^{n} a_{n-i+1}\left(X_{n-i+1}-X_{i}\right) \tag{5}
\end{equation*}
$$

C- Divide the weighted sum by a multiple of the standard deviation, and square the results to get the Shapiro-Wilk statistics Wi.

$$
\begin{equation*}
W=\left\{\frac{b^{2}}{S(n-1)^{0.5}}\right\} \tag{6}
\end{equation*}
$$

D- Compare the computed value of W with five percent critical value for a specific sample size. (McBean and Rovers, 1998).

3.2.2 Order of autoregressive

The value of autoregressive is indicated how the joint distribution of some P consecutive y_{t} 's and the identical distribution of the (independently distributed) u_{t} 's together with:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{t}}=\sum_{\mathrm{r}=0}^{\mathrm{p}} \beta_{\mathrm{r}} \mathrm{y}_{\mathrm{t}-\mathrm{r}} \tag{7}
\end{equation*}
$$

Where:
U_{t} : Random process with mean equals to zero and variance equals to one.
β_{r} : Unknown parameter with $\beta_{0}=1$ and $\left|\beta_{\mathrm{r}}\right|<1$.
y_{t-r} : observation (data) at time equals to t-r.

For first order case, where $\mathrm{p}=1$

$$
\mathrm{U}_{\mathrm{t}}=\beta_{0} \mathrm{y}_{\mathrm{t}}+\beta_{1} \mathrm{y}_{\mathrm{t}-1}
$$

For $\beta_{0}=1$ and $\rho=\beta_{\mathrm{r}}$ the equation will be

$$
\begin{equation*}
y_{t}=\rho y_{t-1}+U_{t} \tag{8}
\end{equation*}
$$

For second order case, where $\mathrm{P}=2$, replacing $\mathrm{y}_{\mathrm{t}-1}$ in equation (7) and replacing t
with $t-1$ (that is, $y_{t-1}=\rho y_{t-2}+u_{t-1}$) we obtain:

$$
\begin{equation*}
y_{t}=U_{t}+\rho U_{t-1}+\rho^{2} y_{t-2} \tag{9}
\end{equation*}
$$

So in general:

$$
\begin{equation*}
y_{t}=U_{t}+\rho U_{t-1}+\ldots .+\rho^{p-1} U_{(t-(p-1))}+\rho^{p} y_{t-p} \tag{10}
\end{equation*}
$$

Let λ be the lag operator, so the relation between the observation and the lag will be :

$$
\begin{equation*}
\lambda y_{t}=y_{t-1} \tag{11}
\end{equation*}
$$

So equation (7) can be written as:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{t}}=\sum_{\mathrm{r}=0}^{\mathrm{p}} \beta_{\mathrm{rr}} \lambda^{\mathrm{r}} \mathrm{y}_{\mathrm{t}-\mathrm{r}} \tag{12}
\end{equation*}
$$

(Anderson, 1971)

3.2.3 The moving average model

The general formula for the moving average model is given by the equation:
$y_{t}=\sum_{j=0}^{q} \alpha_{q} v_{t-j}$

Where:
y_{t} : Current observation.
α_{q} : unknown parameter, $\alpha_{0}=1$ and $\left|\alpha_{q}\right|<1$.
v_{t} : is a sequence of independent random variables with $\xi v_{t}=0$ and $\xi v_{t}^{2}=\sigma^{2}$.
When adding the lag parameter (λ) into equation (13), so the equation can be written as:

$$
\begin{equation*}
y_{t}=\sum_{j=0}^{q} \alpha_{q} \lambda^{j} v_{t-j} \tag{14}
\end{equation*}
$$

3.2.4 Autoregressive process with moving average residuals: -

This model is summarized by the following equation

$$
\begin{equation*}
\sum_{\mathrm{j}=0}^{\mathrm{q}} \alpha_{\mathrm{q}} \mathrm{v}_{\mathrm{t}-\mathrm{j}}=\sum_{\mathrm{r}=0}^{\mathrm{p}} \beta_{\mathrm{r}} \mathrm{y}_{\mathrm{t}-\mathrm{r}} \tag{15}
\end{equation*}
$$

Equation (14) is valued when lag parameter is not used, when using lag parameter the equation will be

$$
\sum_{\mathrm{j}=0}^{\mathrm{q}} \alpha_{\mathrm{q}} \lambda^{\mathrm{j}} \mathrm{v}_{\mathrm{t}-\mathrm{j}}=\sum_{\mathrm{r}=0}^{\mathrm{p}} \beta_{\mathrm{r}} \lambda^{\mathrm{r}} \mathrm{y}_{\mathrm{t}-\mathrm{r}}
$$

(16) (Anderson, 1971)

After analysis of equation (15), the final equation that is used in the ARMA modeling is:

$$
\begin{equation*}
Y_{t}=\rho_{1} Y_{t-1}+\ldots .+\rho_{\mathrm{p}} Y_{t-p}+U_{t}+\alpha_{q} U_{t}+\ldots .+\alpha_{q} U_{t-q} \tag{17}
\end{equation*}
$$

The residual sum of squares can be calculated at every point on a suitable grid of parameter values, and the values that give the minimum sum of squares may then be assessed. (Chatfield, 1984)

3.2.5 Integrated models:

In practice, most time series are non-stationary. In order to fit a stationary model, it is necessary to remove non-stationary sources of variation. If the observed time series is non-stationary in mean then we can difference the series. This is done by replacing Y_{t} in equation (17) by $\quad{ }^{d}{ }_{X t}$. And representing or roplacing ${ }^{d}{ }_{X t}$ with W_{t}. So the general AZoregressive integrated moving average process (abbreviated ARIMA process) is of the form

$$
\begin{equation*}
\mathrm{W}_{\mathrm{t}}=\rho_{1} \mathrm{~W}_{\mathrm{t}-1}+\ldots .+\rho_{\mathrm{p}} \mathrm{~W}_{\mathrm{t}-\mathrm{p}}+\mathrm{U}_{\mathrm{t}}+\alpha_{\mathrm{q}} \mathrm{U}_{\mathrm{t}}+\ldots .+\alpha_{\mathrm{q}} \mathrm{U}_{\mathrm{t}-\mathrm{q}} \tag{18}
\end{equation*}
$$

The above ARIMA process describing the $d^{\text {th }}$ differences of the data is said to be of order (p, d, q). (Chatfield, 1984)

3.2.6 Linear regression

The mechanics of using the regression line to predict Y from X are simple enough once the line has been fitted through the scatter plot. The equation that defines the regression line is shown in the following equation:

$$
\begin{equation*}
Y^{\prime}=a+b_{y} X \tag{19}
\end{equation*}
$$

Where
Y^{\prime} : The predicted value of Y
a : The regression constant
b_{y} : The regression coefficient
X : Observed value

In words, the predicted value of the variable (Y^{\prime}) for any value of the variable X is computed by multiplying X by the regression coefficient $\left(\mathrm{b}_{\mathrm{y}}\right)$ and adding the regression constant (a). The equation that estimate the regression constant (a) and coefficient $\left(b_{y}\right)$ is called the least square equation. (Diekhoff, 1996).

3.2.7 Quadratic regression

If the relationship was clearly non-linear. In practice you may find it necessary to fit several types of curve to the data and choose the one, which gives the best fit, so if a quadratic relationship is thought to be the appropriate, the regression curve is given by:

$$
\begin{equation*}
Y=a_{0}+a_{1} X+a_{2} x^{2} \tag{20}
\end{equation*}
$$

Then the quantities a_{0}, a_{1} and a_{2} must be estimated from the data. A general method of estimating the parameter is by the method of least squares. (Chatfield, 1978).

3.2.8 Exponential growth regression

If the relationship was clearly non-linear. In practice you may find it necessary to fit several types of curve to the data and choose the one, which gives the best fit, so if an exponential growth relationship is thought to be the appropriate, the regression curve is given by:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{a}_{0} \mathrm{e}^{\mathrm{x}} \tag{21}
\end{equation*}
$$

Then the quantity a_{0} must be estimated from the data. A general method of estimating the parameter is by the method of least squares. (Chatfield, 1978).

3.2.9 Single exponential smoothing

The model should only be used in its basic form for non-seasonal time series showing no trend, so if the data showed trend or seasonality then the first step to make single exponential smoothing regression is to eliminate this trend. The single exponential smoothing equation is written as :

$$
\begin{equation*}
\hat{\mathrm{Y}}_{(\mathrm{N}+1)}=\theta \hat{\mathrm{Y}}_{(\mathrm{N})}+\theta(1-\theta) \hat{\mathrm{Y}}_{(\mathrm{N}-1)}+\theta\left(1-\theta^{2}\right) \hat{\mathrm{Y}}_{(\mathrm{N}-2)}+\ldots \tag{22}
\end{equation*}
$$

Where

$$
\begin{array}{ll}
\hat{\mathrm{Y}}_{(\mathbb{N}+1)} & : \text { Estimated value } \\
\hat{\mathrm{Y}}_{(\mathrm{N})} \hat{\mathrm{Y}}_{(\mathrm{N}-1)} \hat{\mathrm{Y}}_{(\mathrm{N}-2)} & : \text { Past values } \\
\theta & : \text { Smoothing constant }, 0<\theta<1
\end{array}
$$

The value of the smoothing constant, θ, depends on the properties of the given time series. Values between 0.1 and 0.3 is commonly used (Chatfield, 1984).

3.2.10 Testing differences between means

The mechanism of testing the difference between two means is assigning randomly the data to two samples, the first sample is the experimental group, which is affected with the treatment and the second one is the controlled group, which get nothing special. So the difference between the mean is the difference between the average of the first and second sample, mathematically:

$$
\begin{equation*}
\text { Difference in mean }=-X_{1}-X_{2} \tag{23}
\end{equation*}
$$

Where
$\overline{\mathrm{X}} 1=$ The mean of the experimental group.
$\bar{X}_{2}=$ The mean of the controlled group.
The difference in mean is a good test to see if one must accept or reject the null theory. (Chase, 1976).

3.2.11 Cross and distance correlation

For cross and distance correlation, the population correlation coefficient ρ_{xy} between the two random variables x and y is equal to:

$$
\begin{equation*}
\rho_{\mathrm{xy}}=\frac{\sigma_{\mathrm{xy}}}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}} \tag{24}
\end{equation*}
$$

Where
σ : is the variance

3.3 Statistical software:

Many software were established to satisfy statistical purposes, some of these software are: Minitab13, S-Plus 2000, SPSS, Statistica, NCSS 2001, Matlab, and many other software. In this thesis two packages were used: Minitab13 and S-Plus 2000.

Minitab statistical software is designed to help in solving statistical problems. Minitab is a general-purpose statistical system that can be run in either interactive or batch mode, and on mainframe computers, minicomputers or microcomputers. Minitab is easy to learn and easy to use. It is an ideal companion for the student or the worker faced with the need to analyze data and to formulate problems involving random problems. Minitab is a package used for simulation, regression, statistics identifications, fitting, checking, forecasting using ARIMA models, and other applications. (Miller, 1988).

The S-Plus programming provides an interactive computing environment for programming, graphics, and statistical analysis. A variety of data can be stored, manipulated, plotted, and analyzed using build up functions. S plus can easily accommodate and manipulate data stored in ways suitable for direct manipulation as vectors and matrices, as well as the "observations and variables" model used in most statistical packages. This flexibility allows performing a wide range of tasks. S-Plus can be used in statistical analysis, graphics tools, matrices and lists. (Spector, 1994).

3.4. Methodology:

3.4.1 Outliers and missing data

3.4.1.1 The missing data is determined and calculated by the average of the data of the same month.
3.4.1.2 A scatter diagram was plotted using Excel Charts; the diagram was plotted between the variable vs. the time.
3.4.1.3 A box diagram was plotted for the original data by seasonal period and Residuals by seasonal period using the software "Minitab 13"; the outliers are shown in those two diagrams as points.
3.4.1.4 The outliers ware determined in the two cases and checked if they were real outliers or not. The real outliers were not changed; the others were adjusted to the average monthly value.
3.4.1.5 A new scatter diagram was plotted for the new adjusted data using Excel software.

3.4.2 Normality: -

To determine if the data was normal or not in this thesis, four methods were used.

3.4.2.1. Weibull distribution model histogram:

A) The average monthly value for the variable was calculated.
B) Weibull Distribution Model Histogram was drawn using "Minitab 13".
C) The histogram is determined if skewed to left or right or not.

3.4.2.2. coefficient of variance (COV) :

A) The data is divided into four quarters.
B) The coefficient of variable issues found for each quarter Excel sheet.
C) The value of the coefficient of variable is compared with [1], if it is less than
$|1|$ then the data is not skewed; otherwise it is skewed to left or right.

3.4.2.3. Kurtosis coefficient:

A) The data were divided into four quarters.
B) The Kurtosis Coefficient was found for each quarter using Excel sheet.
C) The value of the Kurtosis Coefficient was compared with $|1|$, if it is less than $|1|$ then the data is called Mesokurtic, if not, the data is called Leptokurtic for the positive sign and Platykutric for the negative sign.

3.4.2.4. Shapiro-Wilk test:

A) The data were divided into four quarters.
B) The Shapiro-Wilk Test was found for each quarter using Excel sheet.
C) The value of the Shapiro-Wilk Test was compared with the value in the Appendix (3), if it is greater than it, the data is normally distributed, if it is less than it, the data is skewed.

3.4.3 Order of (AR): -

The value of AR (p) is determined through drawing the Autocorrelation function for the variable, taking into consideration that the value of (p) should not exceed (1) in surface water forecasting, because the small rivers (as Zarka River) the water characteristics do not need more than few days to dilute, so the correlation does not
exceed one month (Viessman and Lewis, 1996). The figures of autocorrelation function is drawn using "Minitab 13" software.

3.4.4 Order of moving average: -

3.4.4.1 The moving average graph for the variables is drawn using Minitab 13 software using different values of (q).
3.4.4.2 The value of (q) is determined when the graph indicates that the trend was minimized and following graph shows no difference with the previous one.

3.4.5 Order of "I'":

3.4.5.1 Four figures containing the original data, detrended, seasonally adjusted data and seasonally adjusted and detrended data using "Minitab 13" software.
3.4.5.2 If the figures show big difference then it needs differentiations, and if they do not show big difference, then there is no need for differentiation.
3.4.5.3 A diagnostic model diagrams for the ARIMA model is drawn using "Minitab 13 " software with $I=0,2$, because the seasonality in Jordan is affected by just the summer and winter seasons.
3.4.5.4 The ARIMA that has less residual between the two diagnostic models is considered to be the model, which we will use.

3.4.6 Forecasting future values: -

The method of forecasting was divided into two parts; the deterministic and the stochastic forecasting:

3.4.6.1 deterministic forecasting:

Four different methods were used in this section, these methods are: linear regression, quadratic regression, exponential growth regression and single exponential smoothing models. The acceptance of a model is determined if the model has an error less than 10% of the real data.

3.4.6.2 stochastic forecasting:

Three forecasting methods were used in this section, these methods are: autoregressive model, moving average model and the ARIMA model. If the error in the stochastic forecasting is less than 10%, then the model will be the best one even if there is lower error in the deterministic model.

3.4.7 Results of forecasting: -

The results of the error in each model are shown in the percentage of error table, the calculations in this table were based on the difference in mean between the real data and the forecasted one, the stochastic forecasting is determined to be the best model if it satisfies the maximum acceptance error, which equals to 10%, otherwise the lowest error in the in the deterministic model will be the best model.

3.4.8 Cross and distance correlation: -

3.4.8.2 The cross and distance correlation was drawn using Minitab 13 software
3.4.8.3 Analyses were made for each figure.

3.5. Analysis

In this section, the data that was collected will be analyzed; six variables will be analyzed in King Talal Reservoir. These variables are: Total suspended solids (TSS), biochemical oxygen demand $\left(\mathrm{BOD}_{5}\right)$, chemical oxygen demand (COD), Total Phosphorus (T-P), and finally the total Nitrogen (T-N). The method that each variable will be analyzed will be the same as discussed in the methodology. The best forecasting method would be determined in the end of each analysis.

3.5.1. Total suspended solids (TSS) variable:

The consequences that were used to analyze the TSS variable were as follows:

3.5.1.1. detection of missing data and outliers:

From the table (1) it is observed that the contains one missing data in December 1999, the observation will be estimated to be the average of the observations of the same month, which is December in this case. The new calculated value is $58.30 \mathrm{mg} / \mathrm{l}$. To detect the outliers, data should be drawn in a scatter diagram (Figure 3) so that outliers will be clearly observed. These data, which contains 156 observations from January 1988 till December 2000, have approximately five outliers and they are in the following months: January 1988, May 1996, September 1996, March 1997, and finally, June 1998. It was observed that the rainfall in 1996 was high, and it is known that when the rainfall is high then the TSS will get higher (Appendix (1)). So the real data are on May and September 1996, the other three data were assumed to be outliers due to human error. They should be adjusted to a new value since they may greatly influence any statistical calculations and yield biased result. The way that outliers were adjusted was the same as the missing data treated and it was equals to the average monthly value.

Figure (3): Original Data of TSS

Figure (4) shows the outliers for the seasonal trends for the original and the residual data, one can conclude from the charts that there are five outliers in both the original data and the residual data in the seasonal condition and that they are the same outliers in the scatter diagram of the original data. Also figure (4) shows the variation in the data for the same month, it can be observe the variation was the highest on January, and was the lowest on April.

Figure (4) Outliers for Seasonal Analysis for TSS Variable

After adjustment the outliers, the new adjusted data are plotted in Figure (4), the figure shows that there are still outliers but these outliers cannot be omitted because they are real data so it can influence the statistics results. While comparing the old data (Figure 3) with the new adjusted data (Figure 5) it can be observed that two figures are quite the same and they have the same trend, so the effect of the outliers on the data was so little.

Figure (5): The New Adjusted Data for TSS mg/l

3.5.1.2. normality of data

In this section, normality of data will be checked through four procedures; first one is by drawing a histogram for Weibull's distribution model, second one is through calculating the coefficient of variance, the third one is through calculating the Kurtosis coefficient, and the fourth one is through calculating the Shapiro-Wilk test. From these four procedures, if the data was not normal then a lognormal transformation to the data will be made.

A- Weibull's distribution model histogram:

Data will be transformed to the average monthly value for the TSS variable; the calculated values were as follows

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
TSS mg/l	65.2	45.4	46.4	50.5	68.0	76.0	81.0	81.9	83.0	81.5	77.5	61.9

The Weibull's distribution histogram is drawn for these twelve data. It can be observed from figure (6) that the data of TSS is quite normal and there is a little
skewness to the left and bulked to the right, but in general the graph gives an indication that the data is normal.

Figure (6) : Weibull Distribution Model Histogram

B- coefficient of variation (COV), preliminary test:

The data were divided into four quarters; each quarter consists of 39 data. Table (3) provides the value of the mean, variance, standard deviation, and the coefficient of variation for the TSS variable.

Table (3): The coefficient of variable for TSS

| | MEAN | VARIANCE | ST. DE. | C.O.V. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| TSS $\quad\left(1^{\text {st }}\right.$ Quarter $)$ | 64.1 | 1244.5 | 35.3 | 0.55 |
| TSS $\quad\left(2^{\text {nd }}\right.$ Quarter $)$ | 67.6 | 442.7 | 21.0 | 0.31 |
| TSS $\quad\left(3^{\text {rd }}\right.$ Quarter $)$ | 80.5 | 1332.0 | 36.5 | 0.45 |
| TSS $\quad\left(4^{\text {th }}\right.$ Quarter $)$ | 65.7 | 535.5 | 23.1 | 0.35 |

It can be shown from table (3) that the value of the coefficient of variation for each quarter is less than 1 , which means that each quarter of the data has a little skewed (either to right or left), so the total data of the TSS variable has less skewness than each of the four TSS quarters, it can be concluded that the TSS variable does not have skewness

C- Kurtosis coefficient (peakedness), vertical test:

To find the Kurtosis coefficient, one should find the value of K , which depends on the fourth moment about the mean and the number of samples, so that the Kurtosis can be calculated. The Kurtosis will give a good indication if the distribution is leptokurtic or platykutric. The data was divided into four quarters, Table (4) provides the values of the Kurtosis coefficient for each quarter and it provides also the calculations needed to calculate the Kurtosis coefficient, which they are: the mean, the variance or standard error, the value of K, and the Kurtosis coefficient.

Table (4): The Kurtosis Coefficient for TSS

| | | | | | Kurtosis |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Coeff. | | | | | |

From table (4) one can observe that the data in the first quarter was leptokurtic, in the second quarter it was normally distributed (mesokurtic), in the third quarter it was fairly leptokurtic and in the fourth quarter is was normally distributed.

The total data of the TSS variable can be assumed to be as fairly normally distributed (mesokurtic).

D- Shapiro-Wilk test

This is another test to show that the data we have is normal or not. Data that have been collected were divided into equal quarters, the value of $\left(a_{n-1+1}\right)$, was taken for 20 data since the value of $n-1+i$ was equal to 20 , the value of $\left(a_{n-1+I}\right)$ was taken from Appendix (2). The Shapiro-Wilk value was compared with the five percent critical value for sample size 20 in Appendix (3), if the value of the Shapiro-Wilk test was greater than it then the data will not show evidence of nonnormality.

Table (5): Shapiro-Wilk Test for the Data of TSS's $1^{\text {st }}$ quarter

No	$\begin{aligned} & \mathrm{TSS} \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	Ordering TSS (1)	Inverse order TSS (2)	2-1	$a(n-1+i)$	(2-1) $\mathrm{x} \mathrm{a}_{(\mathrm{n}-1 \mathrm{i})}$
1	65.17	20.00	125.00	105.00	0.3989	41.88
2	42.00	27.00	103.00	76.00	0.2755	20.94
3	34.00	30.00	93.99	63.98	0.2380	15.23
4	41.00	34.00	92.00	58.00	0.2104	12.20
5	72.00	35.00	91.99	56.99	0.1880	10.71
6	83.00	36.00	83.00	47.00	0.1689	7.94
7	103.00	36.50	83.00	46.50	0.1520	7.07
8	60.00	40.00	82.00	42.00	0.1366	5.74
9	55.00	41.00	79.00	38.00	0.1225	4.65
10	47.00	42.00	74.99	32.99	0.1092	3.60
11	61.00	43.00	72.00	29.00	0.0967	2.80
12	72.00	45.50	72.00	26.50	0.0848	2.25
13	83.00	47.00	69.99	23.00	0.0733	1.69
14	27.00	47.00	65.00	18.00	0.0622	1.12
15	30.00	50.00	64.99	15.00	0.0515	0.77
16	36.50	52.00	61.00	9.00	0.0409	0.37
17	59.00	54.00	60.49	6.49	0.0305	0.20
18	55.00	54.01	60.00	5.99	0.0203	0.12
19	60.49	55.00	59.00	4.00	0.0101	0.04
20	54.01	55.00	55.00	0.00		$\mathrm{b}=139.32$
21	52.00	59.00	55.00	-4.00		$\mathrm{S}=35.277$
22	64.99	60.00	54.01	-5.99		
23	74.99	60.49	54.00	-6.49		
24	45.50	61.00	52.00	-9.00		$\mathrm{W}=0.410<0.939$
25	35.00	64.99	50.00	-15.00		
26	43.00	65.17	47.00	-18.17		$=$ Didn't Satisfied
27	40.00	69.99	47.00	-23.00		
28	36.00	72.00	45.50	-26.50		
29	54.00	72.00	43.00	-29.00		
30	69.99	74.99	42.00	-32.99		
31	50.00	79.00	41.00	-38.00		
32	91.99	82.00	40.00	-42.00		
33	93.99	83.00	36.50	-46.50		
34	125.00	83.00	36.00	-47.00		
35	92.00	91.99	35.00	-56.99		
36	82.00	92.00	34.00	-58.00		
37	79.00	93.99	30.00	-63.98		
38	20.00	103.00	27.00	-76.00		
39	47.00	125.00	20.00	-105.00		

Table (6): Shapiro-Wilk Test for the Data of TSS's $2^{\text {nd }}$ quarter

No	$\begin{gathered} \mathrm{TSS} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering TSS (1)	Inverse order TSS (2)	2-1	$a(n-1+i)$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
40	51.00	26.00	118.00	92.00	0.3989	36.70
41	36.00	28.00	104.99	76.99	0.2755	21.21
42	38.00	36.00	102.99	66.99	0.2380	15.94
43	57.99	37.00	93.99	56.99	0.2104	11.99
44	56.01	38.00	92.99	54.99	0.1880	10.34
45	72.50	47.00	90.00	43.00	0.1689	7.26
46	85.01	51.00	89.00	38.00	0.1520	5.78
47	104.99	54.00	86.98	32.98	0.1366	4.50
48	28.00	56.00	86.00	30.00	0.1225	3.68
49	59.00	56.00	85.01	29.01	0.1092	3.17
50	65.00	56.01	81.00	24.99	0.0967	2.42
51	71.00	57.00	76.99	20.00	0.0848	1.70
52	59.00	57.99	75.00	17.01	0.0733	1.25
53	89.00	59.00	74.00	15.00	0.0622	0.93
54	118.00	59.00	72.50	13.50	0.0515	0.70
55	102.99	59.00	71.00	12.00	0.0409	0.49
56	86.98	60.00	70.00	10.00	0.0305	0.31
57	90.00	63.99	67.00	3.01	0.0203	0.06
58	92.99	65.00	67.00	2.00	0.0101	0.02
59	75.00	65.00	65.00	0.00		$\mathrm{b}=128.43$
60	56.00	67.00	65.00	-2.00		$\mathrm{S}=21.041$
61	56.00	67.00	63.99	-3.01		
62	54.00	70.00	60.00	-10.00		
63	57.00	71.00	59.00	-12.00		$\mathrm{W}=0.980<0.939$
64	59.00	72.50	59.00	-13.50		
65	65.00	74.00	59.00	-15.00		$\underline{=}$ Satisfied
66	70.00	75.00	57.99	-17.01		
67	74.00	76.99	57.00	-20.00		
68	76.99	81.00	56.01	-24.99		
69	86.00	85.01	56.00	-29.01		
70	93.99	86.00	56.00	-30.00		
71	81.00	86.98	54.00	-32.98		
72	67.00	89.00	51.00	-38.00		
73	47.00	90.00	47.00	-43.00		
74	26.00	92.99	38.00	-54.99		
75	60.00	93.99	37.00	-56.99		
76	37.00	102.99	36.00	-66.99		
77	63.99	104.99	28.00	-76.99		
78	67.00	118.00	26.00	-92.00		

Table (7): Shapiro-Wilk Test for the Data of TSS's $3{ }^{\text {rd }}$ quarter

No	$\begin{gathered} \mathrm{TSS} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering TSS (1)	Inverse order TSS (2)	2-1	$a(n-1+i)$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
79	82.99	22.00	187.96	165.96	0.3989	66.20
80	80.00	32.02	169.96	137.94	0.2755	38.00
81	93.99	33.95	151.11	117.16	0.2380	27.88
82	79.00	33.99	136.00	102.01	0.2104	21.46
83	22.00	37.00	127.01	90.02	0.1880	16.92
84	37.00	41.94	112.95	71.01	0.1689	11.99
85	62.95	50.96	111.05	60.09	0.1520	9.13
86	60.01	52.06	98.01	45.95	0.1366	6.28
87	50.96	54.94	97.04	42.10	0.1225	5.16
88	41.94	55.96	93.99	38.03	0.1092	4.15
89	33.95	60.01	92.95	32.93	0.0967	3.18
90	72.93	62.95	86.97	24.02	0.0848	2.04
91	111.05	65.90	84.01	18.12	0.0733	1.33
92	86.97	70.04	82.99	12.95	0.0622	0.81
93	84.01	70.09	81.93	11.84	0.0515	0.61
94	71.97	71.97	80.00	8.04	0.0409	0.33
95	70.09	72.93	79.06	6.13	0.0305	0.19
96	79.06	73.04	79.00	5.96	0.0203	0.12
97	97.04	73.93	75.11	1.17	0.0101	0.01
98	32.02	75.02	75.02	0.00		$b=215.80$
99	33.99	75.11	73.93	-1.17		$\mathrm{S}=36.50$
100	54.94	79.00	73.04	-5.96		
101	169.96	79.06	72.93	-6.13		
102	81.93	80.00	71.97	-8.04		$\mathrm{W}=0.920<0.939$
103	52.06	81.93	70.09	-11.84		
104	112.95	82.99	70.04	-12.95	-	- Didn't Satisfied
105	151.11	84.01	65.90	-18.12		
106	75.11	86.97	62.95	-24.02		
107	136.00	92.95	60.01	-32.93		
108	73.04	93.99	55.96	-38.03		
109	127.01	97.04	54.94	-42.10		
110	70.04	98.01	52.06	-45.95		
111	187.96	111.05	50.96	-60.09		
112	73.93	112.95	41.94	-71.01		
113	55.96	127.01	37.00	-90.02		
114	98.01	136.00	33.99	-102.01		
115	92.95	151.11	33.95	-117.16		
116	75.02	169.96	32.02	-137.94		
117	65.90	187.96	22.00	-165.96		

Table (8): Shapiro-Wilk Test for the Data of TSS's $4^{\text {th }}$ quarter

No	TSS mg / l	Ordering TSS (1)	Inverse order TSS (2)	2-1	$a(n-1+i)$	$(2-1) \mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
118	70.95	6.96	106.12	99.16	0.3989	39.56
119	106.07	33.00	106.07	73.07	0.2755	20.13
120	43.97	33.06	105.95	72.89	0.2380	17.35
121	52.03	37.02	104.59	67.57	0.2104	14.22
122	53.02	39.06	97.03	57.96	0.1880	10.90
123	66.98	39.99	96.90	56.91	0.1689	9.61
124	37.02	40.04	89.88	49.84	0.1520	7.58
125	39.06	43.97	87.92	43.95	0.1366	6.00
126	6.96	44.00	85.84	41.84	0.1225	5.13
127	96.90	48.00	85.06	37.06	0.1092	4.05
128	71.10	52.03	80.89	28.87	0.0967	2.79
129	68.96	53.02	79.91	26.89	0.0848	2.28
130	71.93	54.06	78.09	24.03	0.0733	1.76
131	63.01	57.03	74.98	17.96	0.0622	1.12
132	48.00	58.00	71.93	13.94	0.0515	0.72
133	40.04	63.01	71.10	8.09	0.0409	0.33
134	39.99	64.10	70.95	6.85	0.0305	0.21
135	33.06	66.98	68.96	1.98	0.0203	0.04
136	74.98	67.94	68.02	0.07	0.0101	0.00
137	67.94	67.99	67.99	0.00		$\mathrm{b}=143.76$
138	89.88	68.02	67.94	-0.07		$\mathrm{S}=23.14$
139	80.89	68.96	66.98	-1.98		
140	106.12	70.95	64.10	-6.85		
141	79.91	71.10	63.01	-8.09		$\mathrm{W}=1.016<0.939$
142	97.03	71.93	58.00	-13.94		
143	64.10	74.98	57.03	-17.96		
144	104.59	78.09	54.06	-24.03		$=$ Satisfied
145	44.00	79.91	53.02	-26.89		
146	58.00	80.89	52.03	-28.87		
147	33.00	85.06	48.00	-37.06		
148	54.06	85.84	44.00	-41.84		
149	78.09	87.92	43.97	-43.95		
150	67.99	89.88	40.04	-49.84		
151	87.92	96.90	39.99	-56.91		
152	105.95	97.03	39.06	-57.96		
153	85.84	104.59	37.02	-67.57		
154	85.06	105.95	33.06	-72.89		
155	57.03	106.07	33.00	-73.07		
156	68.02	106.12	6.96	-99.16		

From the Tables shown previously, it has been shown that the data in the first quarter is nonnormal, the second quarter has a normal data, the third has a quite nonnormal one, and the fourth one has a normal distribution. It can be safely say that TSS variable is normally distributed.

3.5.1.3. order of (AR)

For water quality like King Talal Dam, the value of $A R$, which is expressed by the item (p) shall not be more than 1 since the autocorrelation for a particle of TSS does not need more than 1 month till it sediments (Viessman and Lewis, 1996). From Figure (7) it can be seen that the value of AR is equal to 1 , so the value of p will be 1 for the TSS variable.

Figure (7) Autocorrelation Function for TSS Variable

3.5.1.4. order of moving average (MA)

After finding the value of AR , which was 1 , the following procedure is to determine the value of MA, which is expressed by the item (q). Figure (8) shows the change between the real data of the variable TSS and it's moving average with different length of p .

Figure (8) Moving Average of TSS with Different Values of (p)

The moving average can be determined from Figure (8) when the difference between the previous length of p and the followed one have a small difference and that occurred when the value of p was 4 (as shown in Figure (8)), so the TSS variable has a value of MA(4).

3.5.1.5. order of (I)

The last coefficient of ARIMA's parameters is the integrated model (I), which expressed by the item (d). The data should be differenced when there is trend or shift or seasonality in the data, otherwise there is no need to make differentiation for the data. Figure (9) consists of four graphs, which provides a good idea if there is a difference between the original, detrended, seasonally adjusted, and seasonally adjusted and detrended data. It is shown from these four graphs that they are almost the same, which means that the detrended and seasonally effects are almost negligible.

Figure (9): Component Analysis for TSS mg/l

Two season; summer and winter can affect seasonality in Jordan, so if the data has no seasonality effect, then the value of $d=0$ and if we have seasonality effect then the value of $d=2$. Figures (10) and (11) provides ARIMA model diagnostics for ARIMA $=(1,0,4)$ and $(1,2,4)$. It is seen from the two graphs that the residual in Figure (10) is less than Figure (11) so the coefficients of ARIMA that will be used are $(1,0,4)$

Figure (9): ARIMA (1,0,4) Model Diagnostics for TSS

Figure (10): ARIMA $(1,2,4)$ Model Diagnostics for TSS

3.5.1.6. forecasting future values

The following procedure will be used in the forecasting: The values of the data collected will be divided into two parts, the first part consists of 90% of the real data, and this data will be analyzed and predicted. And the second part consists of the last 10% of the real data, and this part will be compared with the predicted values in the mean. The best model is the one that gives the least error in mean.

A- deterministic forecasting

A1- linear regression model

The regression of the additive linear trend is shown in Figure (12).

Figure (12): Trend Analysis for TSS mg/l
It can be observed from the above figure and equation of the linear trend that the data is increasing slowly. Table (9) shows the linear prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (9): The values of the predicted and actual data by linear regression for TSS variable

Row 1 Period (months)	Forecasted $(\mathrm{mg} / \mathrm{l})$	Actual $(\mathrm{mg} / \mathrm{l})$ 2	141
	75.96	79.91	
3	142	76.07	97.03
4	143	76.19	64.10
5	144	76.31	104.59
6	145	76.43	44.00
7	146	76.55	58.00
8	147	76.66	33.00
9	148	76.78	54.06
10	149	76.90	78.09
11	150	77.02	67.99
12	151	77.14	87.92
13	152	77.26	105.95
14	153	77.37	85.84
15	154	77.49	85.06
16	155	77.61	57.03
Comparing the actual values with the predicted ones, one can conclude, after			

calculating the predication error, which equals to 5.0%, that the linear trend model has satisfied the forecasting for the TSS variable.

B3- quadratic regression model

The regression of the additive quadratic trend is shown in Figure (13).

Figure (13): Trend Analysis for TSS mg/l

It can be observed from the above figure and the equation of the quadratic trend that the data is concaved down or in another way that there is an increase in the beginning and then a decrease in the end. Table (10) shows the quadratic prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (10): The values of the predicted and actual data by quadratic regression for TSS variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	68.91	79.91
2	142	68.73	97.03
3	143	68.54	64.10
4	144	68.35	104.59
5	145	68.16	44.00
6	146	67.96	58.00
7	147	67.76	33.00
8	148	67.55	54.06
9	149	67.34	78.09
10	150	67.12	67.99
11	151	66.90	87.92
12	152	66.68	105.95
13	153	66.45	85.84
14	154	66.22	85.06
15	155	65.98	57.03
16	156	65.74	68.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 8.6%, that the quadratic trend model has satisfied the forecasting for the TSS variable.

B3- exponential growth regression model

The regression of the additive exponential growth trend model is shown in Figure (14).

Figure (14): Trend Analysis for TSS mg/l

It can be observed from the above figure and equation of the exponential growth trend that the data has an increasing trend. Table (11) shows the exponential growth prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (11): The values of the predicted and actual data by exponential growth regression for TSS variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	71.01	79.91
2	142	71.14	97.03
3	143	71.26	64.10
4	144	71.38	104.59
5	145	71.51	44.00
6	146	71.63	58.00
7	147	71.76	33.00
8	148	71.88	54.06
9	149	72.01	78.09
10	150	72.13	67.99
11	151	72.26	87.92
12	152	72.38	105.95
13	153	72.51	85.84
14	154	72.64	85.06
15	155	72.76	57.03
16	156	72.89	68.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 1.7%, that the exponential growth trend model has satisfied the forecasting for the TSS variable.

B3- single exponential smoothing model

The regression of the additive single exponential smoothing trend model is shown in Figure (15).

Figure (15): Single Exponential Smoothing for TSS mg/l

Table (12) shows the single exponential smoothing prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (12) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (12): Forecasted, lower, upper and actual values for single exponential smoothing for TSS variable

$\underline{\text { Row }}$	$\frac{\text { Period }}{(\mathrm{month})}$	Forecast mg / l	Lower mg / l	$\frac{\text { Upper }}{\mathrm{mg} / \mathrm{l}}$	$\underline{\text { Actual }}$ 1
	141	83.49	35.72	131.26	79.91
2	142	83.49	35.72	131.26	97.03
3	143	83.49	35.72	131.26	64.10
4	144	83.49	35.72	131.26	104.59
5	145	83.49	35.72	131.26	44.00
6	146	83.49	35.72	131.26	58.00
7	147	83.49	35.72	131.26	33.00
8	148	83.49	35.72	131.26	54.06
9	149	83.49	35.72	131.26	78.09
10	150	83.49	35.72	131.26	67.99
11	151	83.49	35.72	131.26	87.92
12	152	83.49	35.72	131.26	105.95
13	153	83.49	35.72	131.26	85.84
14	154	83.49	35.72	131.26	85.06
15	155	83.49	35.72	131.26	57.03
16	156	83.49	35.72	131.26	68.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 12.4%, that the simple exponential smoothing trend model has not satisfied the forecasting for the TSS variable.

B- stochastic forecasting

B3- auto regression model

Table (13) shows the $\operatorname{AR}(1)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (13) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (13): Forecasted, lower, upper and actual values for $\operatorname{AR}(1)$ for TSS variable

Row	$\frac{\text { Period }}{(\mathrm{month})}$	$\frac{\text { Forecast }}{\underline{\mathrm{mg} / \mathrm{l}}}$		$\frac{\text { Lower }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Upper }}{\underline{\mathrm{mg} / / \mathrm{l}}}$

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 5.4%, that the $\operatorname{AR}(1)$ trend model has satisfied the forecasting for the TSS variable.

B3- moving average regression model

The regression of the additive MA(4) trend model is shown in Figure(16).

Figure (16): Moving Average Trend for TSS mg/l
Table (14) shows the $\mathrm{MA}(4)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (14) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (14): Forecasted, lower, upper and actual values for MA(4) for TSS variable

Row	Period	Forecast	Lower	Upper	Actual
	(month)	$\underline{\mathrm{mg} / \mathrm{l}}$	mg/l	$\underline{\mathrm{mg} / \mathrm{l}}$	mg/l
1	141	82.32	27.60	137.03	79.91
2	142	82.32	27.60	137.03	97.03
3	143	82.32	27.60	137.03	64.10
4	144	82.32	27.60	137.03	104.59
5	145	82.32	27.60	137.03	44.00
6	146	82.32	27.60	137.03	58.00
7	147	82.32	27.60	137.03	33.00
8	148	82.32	27.60	137.03	54.06
9	149	82.32	27.60	137.03	78.09
10	150	82.32	27.60	137.03	67.99
11	151	82.32	27.60	137.03	87.92
12	152	82.32	27.60	137.03	105.95
13	153	82.32	27.60	137.03	85.84
14	154	82.32	27.60	137.03	85.06
15	155	82.32	27.60	137.03	57.03
16	156	82.32	27.60	137.03	68.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 11.1%, that the $\mathrm{MA}(5)$ trend model has not satisfied the forecasting for the TSS variable.

B3- ARMA modeling

Table (15) shows the $\operatorname{ARMA}(1,4)$ prediction values for the next 10% of the predicted and the real data, which equals to 16 observations. In Table (15) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (15): Forecasted, lower, upper and actual values for $\operatorname{ARIMA}(1,0,4)$ for TSS variable

Row	Period	Forecast	Lower	Upper	Actual
	(month)	mg/l	mg/l	mg/l	mg/l
1	141	67.77	66.95	68.58	79.91
2	142	67.82	66.33	69.31	97.03
3	143	67.72	65.76	69.69	64.10
4	144	67.61	65.46	69.75	104.59
5	145	67.60	65.46	69.75	44.00
6	146	67.60	65.46	69.75	58.00
7	147	67.60	65.46	69.75	33.00
8	148	67.60	65.46	69.75	54.06
9	149	67.60	65.46	69.75	78.09
10	150	67.60	65.46	69.75	67.99
11	151	67.60	65.46	69.75	87.92
12	152	67.60	65.46	69.75	105.95
13	153	67.60	65.46	69.75	85.84
14	154	67.60	65.46	69.75	85.06
15	155	67.60	65.46	69.75	57.03
16	156	67.60	65.46	69.75	68.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 8.2%, that the $\operatorname{ARIMA}(1,0,4)$ trend model has satisfied the forecasting for the TSS variable.

3.5.1.7 Results of Prediction

The results of error are summarized in the following Table (16), which provides a summary of the models name used in the prediction and also it provides the percentage error.

Table (16) : Percentage of error of each model for TSS variable

Model	Percentage of Mean Error
Linear Method	5.0%
Quadratic Method	8.6%
Exponential Growth Method	1.7%
Simple Exponential Smoothing	12.4%
Auto Regression, AR(1)	5.4%
Moving Average, MA(4)	11.1%
ARIMA (1,0,4)	8.2%

The previous Table (16) shows that all the methods have satisfied the 10% acceptable prediction limits, except in MA(4) and in simple exponential smoothing. When finding the best model that gave the least error it will be the exponential growth method, this is for deterministic forecasting. But one should take into consideration that we deal with stochastic method, so AR (1) will be the best method for forecasting.

3.5.2 Biochemical oxygen demand $\left(\mathrm{BOD}_{5}\right)$ variable:

The consequences that were used to analyze the BOD_{5} variable were as follows:

3.5.2.1 detection of missing data and outliers:

From the table (1) it is observed that the data do not contain any missing data, so the second step is to find the outliers, data should be drawn in a scatter diagram (Figure 17) so that outliers will be clearly observed. These data, which contains 156 observations from January 1988 till December 2000, have approximately three outliers and they are in the following months: January 1995, January 1997, and December 1997. It was observed that the rainfall in January 1995 was low, and it is known that when the rainfall is low then the BOD_{5} will get high, in January and December 1997 the rainfall was high so the BOD_{5} should be low (Appendix (1)). So the real data is on January 1995, the other three data were assumed to be outliers due to human error, and they should be adjusted to a new value since they may greatly influence any statistical calculations and yield biased result. The way that outliers were adjusted was the same as the missing data treated and it was equals to the average monthly value.

Figure (17): Original Data of $\mathrm{BOD}_{5} \mathrm{mg} / \mathrm{l}$

Figure (18) shows the outliers for the seasonal trends for the original and the residual data, one can conclude from the charts that there are five outliers in both the original data and the residual data in the seasonal condition. Also figure (18) shows the variation in the data for the same month, it can be observe that the variation was the highest on December, and was the lowest on February. Another two outliers were found in the seasonal drawings, they are in November 1996, and March 1997. There was high rainfall in March 1997 so it should be adjusted (Appendix (1)), while in November 1996 it was a real data.

Seasonal Analysis for BOD5 mg/l

Figure (18) Outliers for Seasonal Analysis for BOD5 Variable

After adjustment the outliers, the new adjusted data are plotted in Figure (17), the figure shows that their still outliers but these outliers cannot be omitted because they are real data so it can influence the statistics results. While comparing the old data (Figure 17) with the new adjusted data (Figure 19) it can be observed that two figures are quite the same and they have the same trend, so the effect of the outliers on the data was so little.

Figure (19): The New Adjusted Data of BOD5 mg/l

3.5.2.2 normality of data

In this section, normality of data will be checked through four procedures; first one is by drawing a histogram for Weibull's distribution model, second one is through calculating the coefficient of variance, the third one is through calculating the Kurtosis coefficient, and the fourth one is through calculating the Shapiro-Wilk test. From these four procedures, if the data was not normal then a lognormal transformation to the data will be made.

A- Weibull's distribution model histogram:

Data will be transformed to the average monthly value for the BOD_{5} variable; the calculated values were as follows

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
$\begin{array}{lllllllllllll}\text { BOD5 } & 36.7 & 28.1 & 28.0 & 42.7 & 42.8 & 45.7 & 39.5 & 41.5 & 38.1 & 36.2 & 37.8 & 36.2\end{array}$

The Weibull's distribution histogram is drawn for these twelve data. It can be observed from figure (20) that the data of BOD_{5} is quite normal and there is a little skewness to the left and bulked to the right, but in general the graph gives an indication that the data is normal.

Figure (20) : Weibull Distribution Model Histogram

B- coefficient of variation (COV), preliminary test:

The data were divided into four quarters; each quarter consists of 39 data. Table (17) provides the value of the mean, variance, standard deviation, and the coefficient of variation for the BOD_{5} variable.

Table (17): The coefficient of variable for BOD_{5}

	MEAN	VARIANCE	ST. DE. (S)	C.O.V.	
BOD_{5}	$\left(1^{\text {st }}\right.$ Quarter $)$	25.8	116.6	10.8	0.4
$\mathrm{BOD}_{5} \quad\left(2^{\text {nd }}\right.$ Quarter $)$	31.7	164.9	12.8	0.4	
$\mathrm{BOD}_{5} \quad\left(3^{\text {rd }}\right.$ Quarter $)$	54.3	479.1	21.9	0.4	
$\mathrm{BOD}_{5} \quad\left(4^{\text {th }}\right.$ Quarter $)$	45.4	398.8	20.0	0.4	

It can be shown from the table that the value of the coefficient of variation for each quarter is less than 1 , which means that each quarter of the data has a little skewed (either to right or left), so the total data of the BOD_{5} variable has less skewness than
each of the four BOD_{5} quarters, it can be concluded that the BOD_{5} variable does not have skewness.

C- Kurtosis coefficient (peakedness), vertical test:

To find the Kurtosis coefficient, one should find the value of K, which depends on the fourth moment about the mean and the number of samples, so that the Kurtosis can be calculated. The Kurtosis will give a good indication if the distribution is leptokurtic or platykutric. The data was divided into four quarters, Table (18) provides the values of the Kurtosis coefficient for each quarter and it provides also the calculations needed to calculate the Kurtosis coefficient, which they are: the mean, the variance or standard error, the value of K, and the Kurtosis coefficient.

Table (18): The Kurtosis Coefficient for BOD_{5}

	MEAN	VARIANCE	ST. DE. (S)	K	Kurtosis Coeff. C_{K}
BOD5 (1st Quarter)	25.8	116.6	10.8	30758.3	-0.7
BOD5 (2nd Quarter)	31.7	164.9	12.8	60771.7	-0.8
BOD5 (3rd Quarter)	54.3	479.1	21.9	1114502.6	1.9
BOD5 (4th Quarter)	45.4	398.8	20.0	2021622.8	9.7

From table (18) one can observe that the data in the first and second quarters were normally distributed (mesokurtic), in the third quarter it was fairly leptokurtic and in the fourth quarter is was leptokurtic. The total data of the BOD5 variable can be assumed to be as fairly normally distributed (mesokurtic).

D- Shapiro-Wilk test

This is another test to show that the data we have is normal or not. Data that have been collected were divided into equal quarters, the value of $\left(a_{n-1+1}\right)$, was taken for 20 data since the value of $n-1+\mathrm{i}$ was equal to 20 , the value of $\left(\mathrm{a}_{\mathrm{n}-1+\mathrm{I}}\right)$ was taken from appendix (2). The Shapiro-Wilk value was compared with the five percent critical value for sample size 20 in Appendix (3), if the value of the Shapiro-Wilk test was greater than it then the data will not show evidence of nonnormality.

From the Tables (19), (20), (21), and (22) it has been shown that the data in the first quarter is nonnormal, the second quarter has a normal data, the third has a quite not normal one, and the fourth one has a normal distribution. It can be safely say that BOD_{5} variable is normally distributed.

Table (19): Shapiro-Wilk Test for the Data of BOD_{5} 's $1^{\text {st }}$ quarter

No	$\begin{gathered} \mathrm{BOD}_{5} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering BOD_{5} (1)	Inverse order BOD_{5} (2)	2-1	A(n-1+i)	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
1	47.00	6.00	47.00	41.00	0.3989	16.35
2	10.00	10.00	47.00	37.00	0.2755	10.19
3	6.00	11.00	42.00	31.00	0.2380	7.38
4	34.00	11.50	39.00	27.50	0.2104	5.79
5	36.00	12.00	37.00	25.00	0.1880	4.70
6	33.00	13.00	36.00	23.00	0.1689	3.88
7	35.00	14.50	36.00	21.50	0.1520	3.27
8	17.00	15.00	36.00	21.00	0.1366	2.87
9	36.00	16.00	36.00	20.00	0.1225	2.45
10	30.00	16.00	36.00	20.00	0.1092	2.18
11	26.00	17.00	35.00	18.00	0.0967	1.74
12	36.00	18.00	34.00	16.00	0.0848	1.36
13	12.00	18.50	33.00	14.50	0.0733	1.06
14	11.50	19.00	33.00	14.00	0.0622	0.87
15	22.00	21.00	30.00	9.00	0.0515	0.46
16	14.50	22.00	30.00	7.99	0.0409	0.33
17	37.00	22.00	29.00	7.00	0.0305	0.21
18	25.00	25.00	27.00	2.01	0.0203	0.04
19	25.00	25.00	26.00	1.00	0.0101	0.01
20	18.50	25.00	25.00	0.00		$\mathrm{b}=65.15$
21	16.00	26.00	25.00	-1.00		$\mathrm{S}=10.80$
22	16.00	27.00	25.00	-2.01		
23	18.00	29.00	22.00	-7.00		
24	21.00	30.00	22.00	-7.99		$\mathrm{W}=0.958>0.939$
25	13.00	30.00	21.00	-9.00		
26	19.00	33.00	19.00	-14.00		Satisfied
27	15.00	33.00	18.50	-14.50		
28	22.00	34.00	18.00	-16.00		
29	27.00	35.00	17.00	-18.00		
30	36.00	36.00	16.00	-20.00		
31	33.00	36.00	16.00	-20.00		
32	25.00	36.00	15.00	-21.00		
33	30.00	36.00	14.50	-21.50		
34	42.00	36.00	13.00	-23.00		
35	36.00	37.00	12.00	-25.00		
36	39.00	39.00	11.50	-27.50		
37	47.00	42.00	11.00	-31.00		
38	29.00	47.00	10.00	-37.00		
39	11.00	47.00	6.00	-41.00		

Table (20): Shapiro-Wilk Test for the Data of BOD_{5} 's $2^{\text {nd }}$ quarter

No	$\begin{gathered} \mathrm{BOD}_{5} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering BOD_{5} (1)	Inverse order BOD_{5} (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{i})$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
40	28.00	11.00	58.00	47.00	0.3989	18.75
41	30.00	11.00	54.00	43.00	0.2755	11.85
42	26.00	13.00	52.00	39.00	0.2380	9.28
43	21.00	15.00	50.00	35.00	0.2104	7.36
44	21.00	15.00	47.00	32.00	0.1880	6.02
45	25.17	15.00	45.00	30.00	0.1689	5.07
46	44.01	19.00	45.00	26.00	0.1520	3.95
47	40.00	21.00	44.01	23.01	0.1366	3.14
48	11.00	21.00	44.00	23.00	0.1225	2.82
49	23.00	21.00	43.00	22.00	0.1092	2.40
50	19.00	22.00	42.00	19.99	0.0967	1.93
51	15.00	23.00	40.00	17.00	0.0848	1.44
52	21.00	24.00	40.00	16.00	0.0733	1.17
53	25.00	25.00	39.00	14.00	0.0622	0.87
54	28.00	25.17	38.00	12.83	0.0515	0.66
55	33.00	26.00	36.99	10.99	0.0409	0.45
56	36.99	28.00	33.00	5.00	0.0305	0.15
57	24.00	28.00	33.00	5.00	0.0203	0.10
58	11.00	28.00	33.00	5.00	0.0101	0.05
59	13.00	30.00	30.00	0.00		$\mathrm{b}=77.47$
60	15.00	33.00	28.00	-5.00		$\mathrm{S}=12.84$
61	15.00	33.00	28.00	-5.00		
62	22.00	33.00	28.00	-5.00		
63	33.00	36.99	26.00	-10.99		$\mathrm{W}=0.958>0.939$
64	43.00	38.00	25.17	-12.83		
65	38.00	39.00	25.00	-14.00		Satisfied
66	33.00	40.00	24.00	-16.00		
67	44.00	40.00	23.00	-17.00		
68	54.00	42.00	22.00	-19.99		
69	47.00	43.00	21.00	-22.00		
70	40.00	44.00	21.00	-23.00		
71	45.00	44.01	21.00	-23.01		
72	50.00	45.00	19.00	-26.00		
73	45.00	45.00	15.00	-30.00		
74	39.00	47.00	15.00	-32.00		
75	28.00	50.00	15.00	-35.00		
76	58.00	52.00	13.00	-39.00		
77	42.00	54.00	11.00	-43.00		
78	52.00	58.00	11.00	-47.00		

Table (21): Shapiro-Wilk Test for the Data of BOD_{5} 's $3^{\text {rd }}$ quarter

No	BOD_{5} mg / l	Ordering BOD_{5} (1)	Inverse order BOD_{5} (2)	$2-1$		
$\mathrm{a}(\mathrm{n}-1+\mathrm{i})$	$(2-1) \mathrm{x} \mathrm{a}_{(\mathrm{n}-1+\mathrm{i})}$					
79	60.99	15.00	125.00	110.00	0.3989	43.88
80	63.00	18.97	95.03	76.06	0.2755	20.95
81	47.00	28.00	92.00	64.00	0.2380	15.23
82	28.00	32.04	85.00	52.96	0.2104	11.14
83	45.00	33.08	80.04	46.96	0.1880	8.83
84	15.00	33.89	77.08	43.19	0.1689	7.30
85	92.00	36.96	74.02	37.07	0.1520	5.63
86	32.04	36.99	69.87	32.88	0.1366	4.49
87	41.99	38.98	68.06	29.08	0.1225	3.56
88	55.01	40.01	65.08	25.07	0.1092	2.74
89	61.97	41.04	63.06	22.03	0.0967	2.13
90	50.03	41.99	63.00	21.02	0.0848	1.78
91	54.04	43.05	61.97	18.92	0.0733	1.39
92	45.93	44.04	60.99	16.95	0.0622	1.05
93	51.62	45.00	56.96	11.96	0.0515	0.62
94	45.95	45.93	55.01	9.09	0.0409	0.37
95	18.97	45.95	54.04	8.09	0.0305	0.25
96	36.96	47.00	54.03	7.03	0.0203	0.14
97	38.98	47.05	51.62	4.57	0.0101	0.05
98	47.05	50.03	50.03	0.00		$\mathrm{b}=131.53$ 99 43.05

Table (22): Shapiro-Wilk Test for the Data of BOD_{5} 's $4^{\text {th }}$ quarter

No	$\begin{gathered} \mathrm{BOD}_{5} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering BOD_{5} (1)	Inverse order BOD_{5} (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{i})$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
118	31.89	18.93	135.00	116.07	0.3989	46.30
119	46.98	22.05	77.00	54.96	0.2755	15.14
120	135.00	24.98	64.03	39.05	0.2380	9.29
121	29.97	25.07	62.09	37.02	0.2104	7.79
122	30.96	29.97	61.90	31.93	0.1880	6.00
123	36.98	30.04	59.10	29.06	0.1689	4.91
124	25.07	30.13	58.06	27.93	0.1520	4.25
125	31.96	30.89	57.97	27.08	0.1366	3.70
126	57.97	30.96	57.97	27.01	0.1225	3.31
127	45.01	31.89	57.12	25.23	0.1092	2.76
128	57.12	31.96	57.08	25.12	0.0967	2.43
129	38.92	34.87	56.07	21.20	0.0848	1.80
130	59.10	35.90	51.94	16.04	0.0733	1.18
131	51.94	35.98	47.11	11.13	0.0622	0.69
132	47.11	36.98	46.98	10.00	0.0515	0.51
133	40.99	37.86	45.08	7.21	0.0409	0.30
134	24.98	38.92	45.01	6.09	0.0305	0.19
135	62.09	39.07	43.06	3.98	0.0203	0.08
136	64.03	40.04	42.04	2.00	0.0101	0.02
137	61.90	40.99	40.99	0.00		b=110.64
138	77.00	42.04	40.04	-2.00		$\mathrm{S}=19.97$
139	42.04	43.06	39.07	-3.98		
140	56.07	45.01	38.92	-6.09		
141	30.04	45.08	37.86	-7.21		$\mathrm{W}=0.808<0.939$
142	30.89	46.98	36.98	-10.00		
143	35.90	47.11	35.98	-11.13		
144	43.06	51.94	35.90	-16.04		Did not Satisfied
145	35.98	56.07	34.87	-21.20		
146	39.07	57.08	31.96	-25.12		
147	22.05	57.12	31.89	-25.23		
148	57.08	57.97	30.96	-27.01		
149	57.97	57.97	30.89	-27.08		
150	45.08	58.06	30.13	-27.93		
151	30.13	59.10	30.04	-29.06		
152	37.86	61.90	29.97	-31.93		
153	34.87	62.09	25.07	-37.02		
154	58.06	64.03	24.98	-39.05		
155	18.93	77.00	22.05	-54.96		
156	40.04	135.00	18.93	-116.07		

3.5.2.3 order of (AR)

For water quality like King Talal Dam, the value of AR, which is expressed by the item (p) shall not be more than 1 since the autocorrelation for a particle of BOD_{5} does not need more than 1 month till it analyze (Viessman and Lewis, 1996). From Figure (21) it can be seen that the value of AR is more than 1 , but the value of p that will be used is 1 for the BOD_{5} variable.

Figure (21) Autocorrelation Function for BOD_{5} Variable

3.5.2.4 order of moving average (MA)

After finding the value of AR, which was 1 , the following procedure is to determine the value of MA, which is expressed by the item (q). Figure (22) shows the change between the real data of the variable BOD_{5} and it's moving average with different lengths of p .

Mbing Average	MbingAcrage	
MbingAverage	MoingArage	
Mouing Average	MbingAerage	

Figure (22) Moving Average of BOD_{5} with Different Values of (p)

The moving average can be determined from Figure (22) when the difference between the previous length of p and the followed one have a small difference and that occurred when the value of p was 3 (as shown in Figure (22)), so the BOD5 variable has a value of MA(3).

3.5.2.5 order of (I)

The last coefficient of ARIMA's parameters is the integrated model (I), which expressed by the item (d). The data should be differenced when there is trend or shift or seasonality in the data, otherwise there is no need to make differentiation for the data. Figure (23) consists of four graphs, which provides a good idea if there is a difference between the original, detrended, seasonally adjusted, and seasonally adjusted and detrended data. It is shown from these four graphs that they are almost the same, which means that the detrended and seasonally effects are almost negligible.

Figure (23): Component Analysis for BOD5 mg/l

Two season; summer and winter can affect seasonality in Jordan, so if the data has no seasonality effect, then the value of $\mathrm{d}=0$ and if we have seasonality effect then the value of $\mathrm{d}=2$. Figure (24) provides ARIMA model diagnostics for ARIMA $=$ $(1,0,3)$, but for ARIMA $=(1,2,3)$ the program could not draw it since it gives singular matrix. It can be concluded that ARIMA $(1,0,3)$ gives the best regression.

Figure (24): ARIMA (1,0,3) Model Diagnostics for BOD_{5}

3.5.2.6 forecasting future values

The following procedure will be used in the forecasting: The values of the data collected will be divided into two parts, the first part consists of 90% of the real data, and this data will be analyzed and predicted. And the second part consists of the last 10% of the real data, and this part will be compared with the predicted values in the mean. The best model is the one that gives the least error in mean.

A- deterministic forecasting

A1- linear regression model

The regression of the additive linear trend is shown in Figure (25).

Figure(25): Trend Analysis for BOD5 mg/l
It can be observed from the above figure and equation of the linear trend that the data is increasing slowly. Table (23) shows the linear prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (23): The values of the predicted and actual data by linear regression for BOD_{5} variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	60.19	30.04
2	142	60.49	30.89
3	143	60.78	35.90
4	144	61.08	43.06
5	145	61.37	35.98
6	146	61.67	39.07
7	147	61.96	22.05
8	148	62.26	57.08
9	149	62.55	57.97
10	150	62.85	45.08
11	151	63.14	30.13
12	152	63.44	37.86

13	153	63.73	34.87
14	154	64.03	58.06
15	155	64.32	18.93
16	156	64.62	40.04

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 38.2%, that the linear trend model did not satisfy the forecasting for the BOD5 variable.

A2- quadratic regression model

The regression of the additive quadratic trend is shown in Figure (26).

It can be observed from the above figure and the equation of the quadratic trend that the data is increasing upward slowly. Table (24) shows the quadratic prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (24): The values of the predicted and actual data by quadratic regression for BOD_{5} variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	59.93	30.04
2	142	60.21	30.89
3	143	60.49	35.90
4	144	60.78	43.06

5	145	61.06	35.98
6	146	61.34	39.07
7	147	61.63	22.05
8	148	61.91	57.08
9	149	62.19	57.97
10	150	62.47	45.08
11	151	62.76	30.13
12	152	63.04	37.86
13	153	63.32	34.87
14	154	63.60	58.06
15	155	63.88	18.93
16	156	64.16	40.04

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 37.9%, that the quadratic trend model did not satisfy the forecasting for the BOD5 variable.

A3- exponential growth regression model

The regression of the additive exponential growth trend model is shown in Figure (27).

Figure(27): Trend Analysis for BOD5 mg/l
Growth Curve Model $\mathrm{Yt}=19.4234^{\star}\left(1.00811^{* *} \mathrm{t}\right)$

It can be observed from the above figure and equation of the exponential growth trend that the data has an increasing trend. Table (25) shows the exponential growth prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (25): The values of the predicted and actual data by exponential growth regression for BOD_{5} variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	71.01	30.04
2	142	71.14	30.89
3	143	71.26	35.90
4	144	71.38	43.06
5	145	71.51	35.98
6	146	71.63	39.07
7	147	71.76	22.05
8	148	71.88	57.08
9	149	72.01	57.97
10	150	72.13	45.08
11	151	72.26	30.13
12	152	72.38	37.86
13	153	72.51	34.87
14	154	72.64	58.06
15	155	72.76	18.93
16	156	72.89	40.04

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 46.4%, that the exponential growth trend model did not satisfy the forecasting for the BOD5 variable.

A4- single exponential smoothing model

The regression of the additive single exponential smoothing trend model is shown in Figure (28).

Figure(28): Single Exponential Smoothing for BOD5 mg/l

Table (26) shows the single exponential smoothing prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (26) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (26): Forecasted, lower, upper and actual values by single exponential smoothing for BOD_{5} variable

$\underline{\text { Row }}$	Period (month)	$\frac{\text { Forecast }}{\mathrm{mg} / \mathrm{l}}$	$\frac{\text { Lower }}{\mathrm{mg} / \mathrm{l}}$	Upper mg / l	$\underline{\text { Actual }}$ 1
	141	53.91	23.34	84.48	30.04
2	142	53.91	23.34	84.48	30.89
3	143	53.91	23.34	84.48	35.90
4	144	53.91	23.34	84.48	43.06
5	145	53.91	23.34	84.48	35.98
6	146	53.91	23.34	84.48	39.07
7	147	53.91	23.34	84.48	22.05
8	148	53.91	23.34	84.48	57.08
9	149	53.91	23.34	84.48	57.97
10	150	53.91	23.34	84.48	45.08
11	151	53.91	23.34	84.48	30.13
12	152	53.91	23.34	84.48	37.86
13	153	53.91	23.34	84.48	34.87
14	154	53.91	23.34	84.48	58.06

15	155	53.91	23.34	84.48	18.93
16	156	53.91	23.34	84.48	40.04

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 28.5%, that the simple exponential smoothing trend model has not satisfied the forecasting for the BOD5 variable.

B- stochastic forecasting

B1- auto regression model

Table (27) shows the $\mathrm{AR}(1)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (27) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (27): Forecasted, lower, upper and actual values by $\mathrm{AR}(1)$ for BOD_{5} variable

Row	Period (month)	Forecast mg/l	$\frac{\text { Lower }}{\mathrm{mg} / \mathrm{l}}$	Upper mg/l	$\frac{\text { Actual }}{\mathrm{mg} / \mathrm{l}}$
1	141	82.95	36.96	128.93	30.04
2	142	73.92	24.57	123.28	30.89
3	143	70.41	20.57	120.25	35.90
4	144	69.04	19.13	118.96	43.06
5	145	68.51	18.59	118.44	35.98
6	146	68.30	18.38	118.23	39.07
7	147	68.22	18.30	118.15	22.05
8	148	68.19	18.26	118.12	57.08
9	149	68.18	18.25	118.11	57.97
10	150	68.18	18.25	118.10	45.08
11	151	68.17	18.25	118.10	30.13
12	152	68.17	18.25	118.10	37.86
13	153	68.17	18.24	118.10	34.87
14	154	68.17	18.24	118.10	58.06
15	155	68.17	18.24	118.10	18.93
16	156	68.17	18.24	118.10	40.04

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 44.7%, that the $\operatorname{AR}(1)$ trend model has not satisfied the forecasting for the BOD5 variable.

B2- moving average regression model

The regression of the additive MA (3) trend model is shown in Figure (29).

Figure (29): Moving Average Trend for BOD5 mg/l

Table (28) shows the MA(3) prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (28) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (28): Forecasted, lower, upper and actual values by MA (3) for BOD_{5} variable

Row	Period	Forecast	Lower	Upper	Actual
	(month)	$\underline{\mathrm{mg} / \mathrm{l}}$	mg/l	mg / l	mg/l
1	141	58.37	22.55	94.19	30.04
2	142	58.37	22.55	94.19	30.89
3	143	58.37	22.55	94.19	35.90
4	144	58.37	22.55	94.19	43.06
5	145	58.37	22.55	94.19	35.98
6	146	58.37	22.55	94.19	39.07
7	147	58.37	22.55	94.19	22.05

8	148	58.37	22.55	94.19	57.08
9	149	58.37	22.55	94.19	57.97
10	150	58.37	22.55	94.19	45.08
11	151	58.37	22.55	94.19	30.13
12	152	58.37	22.55	94.19	37.86
13	153	58.37	22.55	94.19	34.87
14	154	58.37	22.55	94.19	58.06
15	155	58.37	22.55	94.19	18.93
16	156	58.37	22.55	94.19	40.04

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 33.9%, that the $\mathrm{MA}(3)$ trend model has not satisfied the forecasting for the BOD5 variable.

B3- ARMA modeling

Table (29) shows the $\operatorname{ARMA}(1,3)$ prediction values for the next 10% of the predicted and the real data, which equals to 16 observations. In Table (29) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (29): Forecasted, lower, upper and actual values by ARMA $(1,3)$ for BOD_{5} variable

Row	Period	Forecast	Lower	Upper	Actual
	(month)	mg/l	mg/l	mg/l	mg/l
1	141	50.48	17.07	83.89	30.04
2	142	51.34	17.49	85.18	30.89
3	143	50.82	16.23	85.41	35.90
4	144	50.56	15.67	85.45	43.06
5	145	50.30	15.13	85.47	35.98
6	146	50.05	14.61	85.48	39.07
7	147	49.80	14.10	85.49	22.05
8	148	49.55	13.61	85.49	57.08
9	149	49.31	13.14	85.49	57.97
10	150	49.08	12.68	85.48	45.08
11	151	48.85	12.24	85.46	30.13
12	152	48.62	11.81	85.44	37.86
13	153	48.40	11.39	85.41	34.87
14	154	48.19	10.99	85.39	58.06
15	155	47.97	10.59	85.35	18.93
16	156	47.76	10.21	85.31	40.04

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 16.1%, that the $\operatorname{ARMA}(1,3)$ trend model has satisfied the forecasting for the BOD5 variable.

3.5.2.7 results of prediction

The results of error are summarized in the following Table (30), which provides a summary of the models name used in the prediction and also it provides the percentage error.

Table (30) : Percentage of error of each model for BOD_{5} variable

Model	Percentage of Mean Error
Linear Method	38.2%
Quadratic Method	37.9%
Exponential Growth Method	46.4%
Simple Exponential Smoothing	28.5%
Auto Regression, AR(1)	44.7%
Moving Average, MA(3)	33.9%
ARMA (1, 3)	16.1%

The previous Table (30) shows that the methods have not satisfied the 10% acceptable prediction limits. When finding the best model that gave the least error it will be ARMA $(1,3)$.

3.5.3 Chemical oxygen demand (COD) variable:

The consequences that were used to analyze the COD variable were as follows:

3.5.3.1 detection of missing data and outliers:

From the table(1) it is observed that the data do not contain any missing data, so the second step is to find the outliers, data should be drawn in a scatter diagram (Figure 30) so that outliers will be clearly observed. These data, which contains 156 observations from January 1988 till December 2000, have approximately five outliers and they are in the following months: March 1988, November 1996, May 1999, June 1999, and August 2000. It was observed that the rainfall in December was high, and it is known that when the rainfall is high then the COD will get low, in November 1996 the rainfall was high, May and June 1999 the rainfall was low so the COD should be high and finally in August 2000 the rainfall was low so the COD should be high (Appendix (1)). So the real data are in March 1988, May 1999, June 1999, and August 2000, the other one data (November 1996) was assumed to be outliers due to human error, and it should be adjusted to a new value since it may greatly influence any statistical calculations and yield biased results. The way that outliers were adjusted was the same as the missing data treated and it was equals to the average monthly value.

Figure (30) Original Data of COD (mg/l)

Figure (31) shows the outliers for the seasonal trends for the original and the residual data, one can conclude from the charts that there are ten outliers in both the original data and the residual data in the seasonal condition. Also Figure (31) shows the variation in the data for the same month, it can be observe that the variation was the highest on December, and was the lowest on October. Another six outliers were found in the seasonal drawings, they are in March 1997, April 1999, July 1999, February 2000, April 2000, and July 2000. There was high rainfall in March 1997 and February 2000 (Appendix (1)) so they should be adjusted, while in the other months they were real data.

Figure (31) Outliers Seasonal Analysis for COD Variable

After adjustment the outliers, the new adjusted data are plotted in Figure (32), the figure shows that their still outliers but these outliers cannot be omitted because they are real data so it can influence the statistics results. While comparing the old data (Figure 30) with the new adjusted data (Figure 32) it can be observed that two figures are quite the same and they have the same trend, so the effect of the outliers on the data was so little.

Figure (32): The New Adjusted Data for COD(mg/l)

3.5.3.2 normality of data

In this section, normality of data will be checked through four procedures; first one is by drawing a histogram for Weibull's distribution model, second one is through calculating the coefficient of variance, the third one is through calculating the Kurtosis coefficient, and the fourth one is through calculating the Shapiro-Wilk test. From these four procedures, if the data was not normal then a lognormal transformation to the data will be made.

A- Weibull's distribution model histogram:

Data will be transformed to the average monthly value for the COD variable; the calculated values were as follows

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
COD mg/l	111.9	84.2	83.6	109.0	117.0	138.7
Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
COD mg/l	124.3	126.4	138.5	121.0	127.1	134.0

The Weibull's distribution histogram is drawn for these twelve data. It can be observed from figure (33) that the data of COD is quite normal and there is a little skewness to the left and bulked to the right, but in general the graph gives an indication that the data is normal.

Figure (33) : Weibull Distribution Model Histogram

B- coefficient of variation (COV), preliminary est:

The data were divided into four quarters; each quarter consists of 39 data. Table (31) provides the value of the mean, variance, standard deviation, and the coefficient of variation for the COD variable.

Table (31): The coefficient of variable for COD

| | MEAN | | ST. DE. | C.O.V. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| COD $\quad\left(1^{\text {st }}\right.$ Quarter $)$ | 93.6 | 977.8 | 31.3 | 0.3 |
| COD $\quad\left(2^{\text {nd }}\right.$ Quarter $)$ | 93.7 | 725.1 | 26.9 | 0.3 |
| COD $\quad\left(3^{\text {rd }}\right.$ Quarter $)$ | 128.5 | 2122.9 | 46.1 | 0.4 |
| COD $\quad\left(4^{\text {th }}\right.$ Quarter $)$ | 166.7 | 4045.4 | 63.6 | 0.4 |

It can be shown from the table that the value of the coefficient of variation for each quarter is less than 1 , which means that each quarter of the data has a little skewed (either to right or left), so the total data of the COD variable has less
skewness than each of the four COD quarters, it can be concluded that the COD variable does not have skewness.

C- Kurtosis coefficient (peakedness), vertical test:

To find the Kurtosis coefficient, one should find the value of K , which depends on the fourth moment about the mean and the number of samples, so that the Kurtosis can be calculated. The Kurtosis will give a good indication if the distribution is leptokurtic or platykutric. The data was divided into four quarters, Table (32) provides the values of the Kurtosis coefficient for each quarter and it provides also the calculations needed to calculate the Kurtosis coefficient, which they are: the mean, the variance or standard error, the value of K, and the Kurtosis coefficient.

Table (32): The Kurtosis Coefficient for COD

	MEAN	VARIANCE	ST. DE. (S)	K	Kurtosis Coeff. C_{K}
COD (1st Quarter)	93.6	977.8	31.3	2939949.6	0.1
COD (2nd Quarter)	93.7	725.1	26.9	45856.6	-2.9
COD (3rd Quarter)	128.5	2122.9	46.1	23428503.4	2.2
COD (4th Quarter)	166.7	4045.4	63.6	39728843.7	-0.6

From table (32) one can observe that the data in the first and fourth quarters were normally distributed (mesokurtic), in the second quarter it was fairly platykutric and in the third quarter is was fairly leptokurtic. The total data of the COD variable can be assumed to be as fairly normally distributed (mesokurtic).

D- Shapiro-Wilk Test

This is another test to show that the data we have is normal or not. Data that have been collected were divided into equal quarters, the value of (a_{n-1+1}), was taken for 20 data since the value of $n-1+i$ was equal to 20 , the value of $\left(a_{n-1+1}\right)$ was taken from appendix (2). The Shapiro-Wilk value was compared with the five percent critical value for sample size 20 in Appendix (3), if the value of the Shapiro-Wilk test was greater than it then the data will not show evidence of nonnormality.

From the Tables (33), (34), (35), and (36) it has been shown that the data in the first, the second, and the fourth quarters are normal, the third has a quite not normal one. It can be safely say that COD variable is normally distributed.

Table (33): Shapiro-Wilk Test for the Data of COD's 1 ${ }^{\text {st }}$ quarter

Table (34): Shapiro-Wilk Test for the Data of COD's $2^{\text {nd }}$ quarter

No	$\begin{aligned} & \text { COD } \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	Ordering COD (1)	Inverse Order COD (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{I})$	I*J	
40	78.00	35.00	160.99	125.99	0.3989	50.26	
41	88.01	51.00	135.01	84.00	0.2755	23.14	
42	95.00	54.00	129.01	75.00	0.2380	17.85	
43	88.98	54.00	127.99	73.99	0.2104	15.57	
44	116.01	59.00	127.00	68.00	0.1880	12.78	
45	126.87	60.00	126.87	66.87	0.1689	11.29	
46	92.01	67.00	123.00	56.00	0.1520	8.51	
47	115.99	73.00	122.00	49.00	0.1366	6.69	
48	35.00	77.00	116.01	39.02	0.1225	4.78	
49	51.00	78.00	116.01	38.01	0.1092	4.15	
50	59.00	83.00	116.00	33.00	0.0967	3.19	
51	67.00	84.00	115.99	31.98	0.0848	2.71	
52	60.00	85.00	98.99	13.99	0.0733	1.03	
53	73.00	85.99	97.00	11.00	0.0622	0.68	
54	85.00	86.00	96.99	11.00	0.0515	0.57	
55	85.99	86.98	95.00	8.02	0.0409	0.33	
56	86.98	88.00	93.00	4.99	0.0305	0.15	
57	93.00	88.01	92.01	4.00	0.0203	0.08	
58	98.99	88.98	91.00	2.01	0.0101	0.02	
59	77.00	90.00	90.00	0.00		$\mathrm{b}=$	163.79
60	54.00	91.00	88.98	-2.01		$\mathrm{S}=$	26.93
61	54.00	92.01	88.01	-4.00			
62	84.00	93.00	88.00	-4.99		W=0	-0.939
63	91.00	95.00	86.98	-8.02		W=0.	> 0.939
64	97.00	96.99	86.00	-11.00			
65	116.01	97.00	85.99	-11.00			Satisfied
66	135.01	98.99	85.00	-13.99			Satisfied
67	116.00	115.99	84.00	-31.98			
68	96.99	116.00	83.00	-33.00			
69	129.01	116.01	78.00	-38.01			
70	160.99	116.01	77.00	-39.02			
71	122.00	122.00	73.00	-49.00			
72	83.00	123.00	67.00	-56.00			
73	86.00	126.87	60.00	-66.87			
74	88.00	127.00	59.00	-68.00			
75	90.00	127.99	54.00	-73.99			
76	127.00	129.01	54.00	-75.00			
77	127.99	135.01	51.00	-84.00			
78	123.00	160.99	35.00	-125.99			

Table (35): Shapiro-Wilk Test for the Data of COD's $3^{\text {rd }}$ quarter

No	$\begin{aligned} & \mathrm{COD} \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	Ordering COD (1)	Inverse Order COD (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{I})$	I* J
79	120.98	39.00	275.02	236.02	0.3989	94.15
80	149.01	72.03	231.98	159.95	0.2755	44.07
81	115.99	79.08	223.02	143.94	0.2380	34.26
82	166.00	83.06	188.07	105.02	0.2104	22.10
83	133.00	88.00	181.05	93.04	0.1880	17.49
84	39.00	90.07	174.92	84.85	0.1689	14.33
85	101.02	91.93	166.00	74.07	0.1520	11.26
86	83.06	93.20	156.03	62.83	0.1366	8.58
87	88.00	94.99	154.97	59.98	0.1225	7.35
88	94.99	101.02	149.01	47.99	0.1092	5.24
89	103.99	103.99	147.08	43.09	0.0967	4.17
90	113.91	104.01	143.08	39.07	0.0848	3.31
91	140.04	104.05	140.04	35.99	0.0733	2.64
92	154.97	107.07	133.00	25.93	0.0622	1.61
93	174.92	110.05	127.92	17.87	0.0515	0.92
94	147.08	113.91	127.02	13.11	0.0409	0.54
95	143.08	114.05	120.98	6.94	0.0305	0.21
96	104.01	114.05	120.93	6.88	0.0203	0.14
97	114.05	115.07	117.04	1.96	0.0101	0.02
98	117.04	115.99	115.99	0.00		$\mathrm{b}=\quad 272.38$
99	114.05	117.04	115.07	-1.96		$\mathrm{S}=\quad 46.07$
100	91.93	120.93	114.05	-6.88		
101	127.02	120.98	114.05	-6.94		$\mathrm{W}=0.920<0.939$
102	110.05	127.02	113.91	-13.11		W $=0.920<0.939$
103	107.07	127.92	110.05	-17.87		
104	127.92	133.00	107.07	-25.93		Satisfied
105	181.05	140.04	104.05	-35.99		
106	120.93	143.08	104.01	-39.07		
107	275.02	147.08	103.99	-43.09		
108	188.07	149.01	101.02	-47.99		
109	231.98	154.97	94.99	-59.98		
110	72.03	156.03	93.20	-62.83		
111	223.02	166.00	91.93	-74.07		
112	115.07	174.92	90.07	-84.85		
113	79.08	181.05	88.00	-93.04		
114	156.03	188.07	83.06	-105.02		
115	104.05	223.02	79.08	-143.94		
116	93.20	231.98	72.03	-159.95		
117	90.07	275.02	39.00	-236.02		

Table (36): Shapiro-Wilk Test for the Data of COD's $4^{\text {th }}$ quarter

No	$\begin{aligned} & \mathrm{COD} \\ & \mathrm{mg} / \mathrm{l} \end{aligned}$	Ordering COD (1)	Inverse order COD (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{I})$	I*J	
118	116.08	68.03	302.96	234.93	0.3989	93.71	
119	147.07	86.04	298.96	212.92	0.2755	58.66	
120	302.96	88.00	268.11	180.11	0.2380	42.87	
121	68.03	88.96	258.93	169.97	0.2104	35.76	
122	126.96	93.96	255.94	161.98	0.1880	30.45	
123	99.96	94.90	230.89	135.99	0.1689	22.97	
124	88.00	99.96	229.93	129.97	0.1520	19.76	
125	93.96	102.97	226.00	123.03	0.1366	16.81	
126	184.93	103.95	219.02	115.07	0.1225	14.10	
127	88.96	104.00	207.14	103.14	0.1092	11.26	
128	103.95	106.91	206.99	100.08	0.0967	9.68	
129	94.90	111.11	205.97	94.86	0.0848	8.04	
130	106.91	116.08	203.06	86.98	0.0733	6.38	
131	111.11	126.96	194.00	67.05	0.0622	4.17	
132	152.00	135.95	184.93	48.98	0.0515	2.52	
133	203.06	136.06	184.08	48.02	0.0409	1.96	
134	86.04	147.07	180.98	33.91	0.0305	1.03	
135	104.00	152.00	177.87	25.87	0.0203	0.53	
136	194.00	162.94	176.07	13.13	0.0101	0.13	
137	255.94	164.98	164.98	0.00		$\mathrm{b}=$	380.79
138	268.11	176.07	162.94	-13.13		$\mathrm{S}=$	63.60
139	230.89	177.87	152.00	-25.87		$\mathrm{W}=0.943>0.939$	
140	177.87	180.98	147.07	-33.91			
141	207.14	184.08	136.06	-48.02			
142	102.97	184.93	135.95	-48.98			
143	176.07	194.00	126.96	-67.05		Satisfied	
144	206.99	203.06	116.08	-86.98			
145	180.98	205.97	111.11	-94.86			
146	219.02	206.99	106.91	-100.08			
147	164.98	207.14	104.00	-103.14			
148	229.93	219.02	103.95	-115.07			
149	136.06	226.00	102.97	-123.03			
150	184.08	229.93	99.96	-129.97			
151	205.97	230.89	94.90	-135.99			
152	258.93	255.94	93.96	-161.98			
153	298.96	258.93	88.96	-169.97			
154	162.94	268.11	88.00	-180.11			
155	135.95	298.96	86.04	-212.92			
156	226.00	302.96	68.03	-234.93			

3.5.3.3 order of (AR)

For water quality like King Talal Dam, the value of $A R$, which is expressed by the item (p) shall not be more than 1 since the autocorrelation for a particle of COD does not need more than 1 month till it analyze (Viessman and Lewis, 1996). From Figure (34) it can be seen that the value of AR is 1 , the value of p that will be used is 1 for the COD variable.

Figure (34) Autocorrelation Function for COD Variable

3.5.3.4 order of moving average (MA)

After finding the value of AR, which was 1 , the following procedure is to determine the value of MA, which is expressed by the item (q). Figure (35) shows the change between the real data of the variable COD and it's moving average with different lengths of p .

Figure (35) Moving Average of COD with Different Values of (p)

The moving average can be determined from Figure (35) when the difference between the previous length of p and the followed one have a small difference and that occurred when the value of p was 4 (as shown in Figure (35)), so the COD variable has a value of MA(4).

3.5.3.5 order of (I)

The last coefficient of ARIMA's parameters is the integrated model (I), which expressed by the item (d). The data should be differenced when there is trend or shift or seasonality in the data, otherwise there is no need to make differentiation for the data. Figure (36) consists of four graphs, which provides a good idea if there is a difference between the original, detrended, seasonally adjusted, and seasonally adjusted and detrended data. It is shown from these four graphs that there are a difference between the original figure and the detrended one but in the seasonal case they are almost the same, which means that the detrended effect could take into consideration.

Figure (36): Component Analysis for COD mg/l

Two season; summer and winter can affect seasonality in Jordan, so if the data has no trend effect, then the value of $d=0$ and if we have trend effect then the value of $\mathrm{d}=2$. Figures (37) and (38) provides ARIMA model diagnostics for ARIMA $=(1,0,4)$ and for ARIMA $=(1,2,4)$. The two figures indicate the same results. It can be concluded that the data has trend effect so $\operatorname{ARIMA}(1,2,4)$ should be used.

Figure (37): ARIMA (1,0,4) Diagnostics for COD

Figure (38): ARIMA (1,2,4) Diagnostics for COD

3.5.3.6 forecasting future values

The following procedure will be used in the forecasting: The values of the data collected will be divided into two parts, the first part consists of 90% of the real data, and this data will be analyzed and predicted. And the second part consists of the last 10% of the real data, and this part will be compared with the predicted values in the mean. The best model is the one that gives the least error in mean.

A- deterministic forecasting

A1- linear regression model

The regression of the additive linear trend is shown in Figure (39).

Figure (39): Trend Analysis for COD mg/l

It can be observed from the above figure and equation of the linear trend that the data is increasing. Table (37) shows the linear prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (37): The values of the predicted and actual data by linear regression for COD variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	150.81	207.14
2	142	151.36	102.97
3	143	151.90	176.07
4	144	152.45	206.99
5	145	153.00	180.98
6	146	153.54	84.18
7	147	154.09	164.98
8	148	154.64	229.93
9	149	155.18	136.06
10	150	155.73	184.08
11	151	156.27	205.97
12	152	156.82	258.93
13	153	157.37	298.96
14	154	157.91	162.94
15	155	158.46	135.95
16	156	159.00	226.00

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 19.5%, that the linear trend model did not satisfy the forecasting for the COD variable.

A2- quadratic regression model

The regression of the additive quadratic trend is shown in Figure (40).

It can be observed from the above figure and the equation of the quadratic trend that the data is increasing upward. Table (38) shows the quadratic prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (38): The values of the predicted and actual data by quadratic regression for COD variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	168.35	207.14
2	142	169.64	102.97
3	143	170.95	176.07
4	144	172.26	206.99
5	145	173.58	180.98
6	146	174.92	84.18
7	147	176.26	164.98
8	148	177.62	229.93
9	149	178.98	136.06
10	150	180.36	184.08
11	151	181.75	205.97
12	152	183.15	258.93
13	153	184.55	298.96
14	154	185.97	162.94
15	155	187.40	135.95
16	156	188.84	226.00

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 3.8%, that the quadratic trend model has satisfied the forecasting for the COD variable.

A3- exponential growth regression model

The regression of the additive exponential growth trend model is shown in Figure (41).

Figure (41): Trend Analysis for COD mg/l

It can be observed from the above figure and equation of the exponential growth trend that the data has an increasing trend. Table (39) shows the exponential growth prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (39): The values of the predicted and actual data by exponential growth regression for COD variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	71.01	207.14
2	142	71.14	102.97
3	143	71.26	176.07

4	144	71.38	206.99
5	145	71.51	180.98
6	146	71.63	84.18
7	147	71.76	164.98
8	148	71.88	229.93
9	149	72.01	136.06
10	150	72.13	184.08
11	151	72.26	205.97
12	152	72.38	258.93
13	153	72.51	298.96
14	154	72.64	162.94
15	155	72.76	135.95
16	156	72.89	226.00

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 23.8%, that the exponential growth trend model did not satisfy the forecasting for the COD variable.

A4- single exponential smoothing model

The regression of the additive single exponential smoothing trend model is shown in Figure (42).

Figure (42): Single Exponential Smoothing for COD mg/l

Table (40) shows the single exponential smoothing prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (40) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (40): Forecasted, lower, upper and actual values by single exponential smoothing for COD variable

Row	$\frac{\text { Period }}{(\text { month })}$	$\frac{\text { Forecast }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Lower }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Upper }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Actual }}{\underline{\mathrm{m}} / \mathrm{l}}$
1	141	199.22	125.62	272.82	207.14
2	142	199.22	125.62	272.82	102.97
3	143	199.22	125.62	272.82	176.07
4	144	199.22	125.62	272.82	206.99
5	145	199.22	125.62	272.82	180.98
6	146	199.22	125.62	272.82	84.18
7	147	199.22	125.62	272.82	164.98
8	148	199.22	125.62	272.82	229.93
9	149	199.22	125.62	272.82	136.06
10	150	199.22	125.62	272.82	184.08
11	151	199.22	125.62	272.82	205.97
12	152	199.22	125.62	272.82	258.93
13	153	199.22	125.62	272.82	298.96
14	154	199.22	125.62	272.82	162.94
15	155	199.22	125.62	272.82	135.95
16	156	199.22	125.62	272.82	226.00

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 7.1%, that the simple exponential smoothing trend model has satisfied the forecasting for the COD variable.

B- stochastic forecasting

B1- auto regression model

Table (41) shows the $\mathrm{AR}(1)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (41) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (41): Forecasted, lower, upper and actual values by AR(1) for COD variable

$\underline{\text { Row }}$	Period (month)	$\frac{\text { Forecast }}{\underline{\mathrm{mg} / \mathrm{l}}}$		$\frac{\text { Lower }}{\mathrm{mg} / \mathrm{l}}$	
1	141	151.95		$\frac{\text { Upper }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Actual }}{\underline{\mathrm{mg} / \mathrm{l}}}$
2	142	137.93	37.08	240.66	207.14
3	143	130.35	26.21	234.78	102.97
4	144	126.40	21.16	231.33	206.97
5	145	124.02	18.67	229.38	180.98
6	146	122.82	17.39	228.26	84.18
7	147	122.17	16.71	227.63	164.98
8	148	121.82	16.35	227.29	229.93
9	149	121.63	16.16	227.10	136.06
10	150	121.53	16.06	227.00	184.08
11	151	121.47	16.00	226.94	205.97
12	152	121.44	15.97	226.91	258.93
13	153	121.43	15.96	226.90	298.96
14	154	121.42	15.95	226.89	162.94
15	155	121.41	15.94	226.88	135.95
16	156	121.41	15.94	226.88	226.00

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 47.4%, that the $\mathrm{AR}(1)$ trend model has not satisfied the forecasting for the COD variable.

B2- moving average regression model

The regression of the additive MA(4) trend model is shown in Figure(43).

Table (42) shows the MA(4) prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (42) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (42): Forecasted, lower, upper and actual values by MA(4) for COD variable

Row	Period (month)	$\frac{\text { Forecast }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Lower }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Upper }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Actual }}{\underline{\mathrm{mg} / \mathrm{l}}}$
1	141	235.22	147.50	322.94	207.14
2	142	235.22	147.50	322.94	102.97
3	143	235.22	147.50	322.94	176.07
4	144	235.22	147.50	322.94	206.99
5	145	235.22	147.50	322.94	180.98
6	146	235.22	147.50	322.94	84.18
7	147	235.22	147.50	322.94	164.98
8	148	235.22	147.50	322.94	229.93
9	149	235.22	147.50	322.94	136.06
10	150	235.22	147.50	322.94	184.08
11	151	235.22	147.50	322.94	205.97
12	152	235.22	147.50	322.94	258.93
13	153	235.22	147.50	322.94	298.9

14	154	235.22	147.50	322.94	162.94
15	155	235.22	147.50	322.94	135.95
16	156	235.22	147.50	322.94	226.00

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 21.3%, that the $\mathrm{MA}(4)$ trend model did not satisfied the forecasting for the COD variable.

B3- ARIMA modeling

Table (43) shows the $\operatorname{ARIMA}(1,2,4)$ prediction values for the next 10% of the predicted and the real data, which equals to 16 observations. In Table (43) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values

Table (43): Forecasted, lower, upper and actual values by ARIMA(1,2,4) for COD variable

Row	Period (month)	$\frac{\text { Forecast }}{\underline{\mathrm{mg} / \mathrm{l}}}$		$\frac{\text { Lower }}{\mathrm{mg} / \mathrm{l}}$		$\frac{\text { Upper }}{\mathrm{mg} / \mathrm{l}}$

Comparing the actual values with the predicted ones, one can conclude, after calcula ting the predication error, which equals to 20.7%, that the $\operatorname{ARIMA}(1,2,4)$ trend model did not satisfy the forecasting for the COD variable.

3.5.3.7 results of prediction

The results of error are summarized in the following Table (44), which provides a summary of the models name used in the prediction and also it provides the percentage error.

Table (44) : Percentage of error of each model for COD variable
Percentage of
Model Mean Error
Linear Method 19.5%
Quadratic Method 3.8 \%
Exponential Growth Method 23.8 \%
Simple Exponential Smoothing 7.1%
Auto Regression, AR(1) 47.4%
Moving Average, MA(4) 21.3 \%
ARIMA (1,2,4) 20.7%

The previous Table (44) shows that the methods, which have satisfied the 10% acceptable prediction limits, are the quadratic and simple exponential smoothing methods. The best model that gave the least error is the quadratic method.

3.5.4 Total phosphorus (T-P) variable:

The consequences that were used to analyze the T-P variable were as follows:

3.5.4. detection of missing data and outliers:

From the table (1) it is observed that the data do not contain any missing data, so the second step is to find the outliers, data should be drawn in a scatter diagram (Figure 44) so that outliers will be clearly observed. These data, which contains 156 observations from January 1988 till December 2000, have approximately two outliers and they are in the following months: March 1992, and December 1999. It was observed that the rainfall in March 1992 was high, and it is known that when the rainfall is high then the T-P will get low, in December 1999 the rainfall was high so the T-P should be low (Appendix (1)). So the real data is on March 1992, the other data was assumed to be an outlier due to human error, and it should be adjusted to a new value since it may greatly influence any statistical calculations and yield biased results. The way that the outlier was adjusted was the same as the missing data treated and it was equal to the average monthly value.

Figure (44):Original Data of T-P mg/l

Figure (45) shows the outliers for the seasonal trends for the original and the residual data, one can conclude from the charts that there are two outliers in both the original data and the residual data in the seasonal condition. Also figure (45) shows the variation in the data for the same month, it can be observe that the variation was the highest on December, and was the lowest on October. Another two outliers were found in the seasonal drawings, they are March 1992, and December 1999, these two outliers were observed in the original data, so no adjustment will be made.

Seasonal Analysis for T-P mg/l

Figure (45) Outliers of Seasonal Analysis for T-P Variable

After adjustment the outliers, the new adjusted data are plotted in Figure (46), the figure shows that there are still outliers but these outliers cannot be omitted because they are real data so it can influence the statistics results. While comparing the old data (Figure 44) with the new adjusted data (Figure 46) it can be observed that two figures are quite the same and they have the same trend, so the effect of the outliers on the data was so little.

Figure (46): The New Adjusted Data of T-P mg/l

3.5.4.2 normality of data

In this section, normality of data will be checked through four procedures; first one is by drawing a histogram for Weibull's distribution model, second one is through calculating the coefficient of variance, the third one is through calculating the Kurtosis coefficient, and the fourth one is through calculating the Shapiro-Wilk test. From these four procedures, if the data was not normal then a lognormal transformation to the data will be made.

A- Weibull's distribution model histogram:

Data will be transformed to the average monthly value for the T-P variable; the calculated values were as follows

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
T-P mg/l	7.67	6.71	6.52	7.83	8.92	9.49
Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
T-P mg/l	10.34	10.04	10.4	10.8	10.4	9.78

The Weibull's distribution histogram is drawn for these twelve data. It can be observed from figure (47) that the data of T-P is quite normal and there is a little skewness to the left and bulked to the right, but in general the graph gives an indication that the data is normal.

Figure (47) : Weibull Distribution Model Histogram for T-P Variable.

B- Coefficient of Variation (COV), Preliminary Test:

The data were divided into four quarters; each quarter consists of 39 data. Table (45) provides the value of the mean, variance, standard deviation, and the coefficient of variation for the T-P variable.

Table (45): The coefficient of variable for T-P

| | MEAN | | ST. DE. | C.O.V. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| T-P $\left(1^{\text {st }}\right.$ Quarter $)$ | 7.0 | 5.9 | 2.4 | 0.3 |
| T-P $\left(2^{\text {nd }}\right.$ Quarter $)$ | 7.3 | 7.6 | 2.8 | 0.4 |
| T-P $\left(3^{\text {rd }}\right.$ Quarter $)$ | 10.2 | 7.9 | 2.8 | 0.3 |
| T-P $\left(4^{\text {th }}\right.$ Quarter $)$ | 12.1 | 10.8 | 3.3 | 0.3 |

It can be shown from the table that the value of the coefficient of variation for each quarter is less than 1 , which means that each quarter of the data has a little skewed (either to right or left), so the total data of the T-P variable has less skewness than each
of the four T-P quarters, it can be concluded that the T-P variable does not have skewness.

C- Kurtosis coefficient (peakedness), vertical test:

To find the Kurtosis coefficient, one should find the value of K , which depends on the fourth moment about the mean and the number of samples, so that the Kurtosis can be calculated. The Kurtosis will give a good indication if the distribution is leptokurtic or platykutric. The data was divided into four quarters, Table (46) provides the values of the Kurtosis coefficient for each quarter and it provides also the calculations needed to calculate the Kurtosis coefficient, which they are: the mean, the variance or standard error, the value of K, and the Kurtosis coefficient.

Table (46): The Kurtosis Coefficient for T-P

	MEAN	VARIANCE	ST. DE. (S)	K	Kurtosis Coeff. $_{\mathrm{C}_{\mathrm{K}}}$
T-P (1st Quarter)	7.0	5.9	2.4	93.3	-0.3
T-P (2nd Quarter)	7.3	7.6	2.8	208.2	0.6
T-P (3rd Quarter)	10.2	7.9	2.8	174.7	-0.2
T-P (4th Quarter)	12.1	10.8	3.3	555.7	1.8

From table (46) one can observe that the data in the first, second, and third quarters were normally distributed (mesokurtic), the fourth quarter was fairly leptokurtic. The total data of the T-P variable can be assumed to be normally distributed (mesokurtic).

D- Shapiro-Wilk test

This is another test to show that the data we have is normal or not. Data that have been collected were divided into equal quarters, the value of $\left(\mathrm{a}_{\mathrm{n}-1+\mathrm{I}}\right)$, was taken for 20 data since the value of $n-1+i$ was equal to 20 , the value of $\left(a_{n-1+1}\right)$ was taken from Appendix (2). The Shapiro-Wilk value was compared with the five percent critical value for sample size 20 in Appendix (3), if the value of the Shapiro-Wilk test was greater than it then the data will not show evidence of nonnormality.

From the Tables (47), (48), (49), and (50) it has been shown that the data in the first quarter is nonnormal, the second quarter has a normal data, the third has a quite not normal one, and the fourth one has a normal distribution. It can be assumed that the whole data has a tendency to be normal distribution, the T-P variable is assumed to have a normal distribution.

Table (47): Shapiro-Wilk Test for the Data of T-P's $1^{\text {st }}$ quarter

No	$\begin{gathered} \text { T-P } \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering T-P (1)	Inverse order T-P (2)	2-1	$a(n-1+i)$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
1	3.00	2.20	11.80	9.60	0.3989	3.83
2	2.20	2.70	11.50	8.80	0.2755	2.42
3	2.70	3.00	10.50	7.50	0.2380	1.78
4	4.50	3.10	10.40	7.30	0.2104	1.54
5	4.90	3.70	10.20	6.50	0.1880	1.22
6	5.20	4.50	10.10	5.60	0.1689	0.95
7	5.90	4.90	9.90	5.00	0.1520	0.76
8	6.10	5.05	8.97	3.92	0.1366	0.54
9	7.10	5.20	8.60	3.40	0.1225	0.42
10	6.50	5.67	8.50	2.83	0.1092	0.31
11	5.80	5.70	8.36	2.66	0.0967	0.26
12	6.70	5.70	8.13	2.43	0.0848	0.21
13	3.10	5.80	8.10	2.30	0.0733	0.17
14	5.05	5.89	8.10	2.21	0.0622	0.14
15	5.70	5.90	8.10	2.20	0.0515	0.11
16	5.67	6.10	8.10	2.00	0.0409	0.08
17	6.50	6.50	8.00	1.50	0.0305	0.05
18	5.89	6.50	7.10	0.60	0.0203	0.01
19	8.10	6.54	6.70	0.16	0.0101	0.00
20	6.54	6.54	6.54	0.00		$\mathrm{b}=14.78$
21	11.80	6.70	6.54	-0.16		$\mathrm{S}=2.43$
22	8.36	7.10	6.50	-0.60		
23	8.97	8.00	6.50	-1.50		
24	8.60	8.10	6.10	-2.00		$\mathrm{W}=0.971>0.939$
25	8.10	8.10	5.90	-2.20		
26	8.10	8.10	5.89	-2.21		Satisfied
27	5.70	8.10	5.80	-2.30		
28	6.54	8.13	5.70	-2.43		
29	8.10	8.36	5.70	-2.66		
30	10.40	8.50	5.67	-2.83		
31	8.50	8.60	5.20	-3.40		
32	8.00	8.97	5.05	-3.92		
33	9.90	9.90	4.90	-5.00		
34	10.20	10.10	4.50	-5.60		
35	10.10	10.20	3.70	-6.50		
36	11.50	10.40	3.10	-7.30		
37	10.50	10.50	3.00	-7.50		
38	8.13	11.50	2.70	-8.80		
39	3.70	11.80	2.20	-9.60		

Table (48): Shapiro-Wilk Test for the Data of T-P's $2^{\text {nd }}$ quarter

No	$\begin{gathered} \mathrm{T}-\mathrm{P} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering T-P (1)	Inverse order T-P (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{i})$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
40	7.45	0.70	13.96	13.26	0.3989	5.29
41	8.70	2.05	12.61	10.56	0.2755	2.91
42	5.90	3.40	11.82	8.42	0.2380	2.00
43	7.78	3.70	10.91	7.21	0.2104	1.52
44	7.58	4.30	10.80	6.50	0.1880	1.22
45	8.51	4.60	10.00	5.40	0.1689	0.91
46	9.25	5.04	9.96	4.92	0.1520	0.75
47	10.80	5.50	9.62	4.12	0.1366	0.56
48	4.30	5.67	9.25	3.58	0.1225	0.44
49	3.40	5.90	9.24	3.34	0.1092	0.36
50	2.05	6.10	8.70	2.60	0.0967	0.25
51	0.70	6.20	8.51	2.31	0.0848	0.20
52	3.70	6.20	8.10	1.90	0.0733	0.14
53	4.60	6.21	7.78	1.57	0.0622	0.10
54	5.50	6.29	7.77	1.48	0.0515	0.08
55	6.40	6.30	7.58	1.28	0.0409	0.05
56	7.30	6.37	7.45	1.08	0.0305	0.03
57	6.84	6.40	7.30	0.90	0.0203	0.02
58	6.37	6.81	7.16	0.35	0.0101	0.00
59	6.29	6.84	6.84	0.00		$\mathrm{b}=16.83$
60	6.20	7.16	6.81	-0.35		$\mathrm{S}=2.75$
61	6.20	7.30	6.40	-0.90		
62	5.04	7.45	6.37	-1.08		
63	5.67	7.58	6.30	-1.28		$\mathrm{W}=0.984>0.939$
64	6.30	7.77	6.29	-1.48		
65	7.77	7.78	6.21	-1.57		- Satisfied
66	9.24	8.10	6.20	-1.90		
67	9.62	8.51	6.20	-2.31		
68	10.00	8.70	6.10	-2.60		
69	10.91	9.24	5.90	-3.34		
70	11.82	9.25	5.67	-3.58		
71	9.96	9.62	5.50	-4.12		
72	8.10	9.96	5.04	-4.92		
73	7.16	10.00	4.60	-5.40		
74	6.21	10.80	4.30	-6.50		
75	6.10	10.91	3.70	-7.21		
76	6.81	11.82	3.40	-8.42		
77	12.61	12.61	2.05	-10.56		
78	13.96	13.96	0.70	-13.26		

Table (49): Shapiro-Wilk Test for the Data of T-P's $3^{\text {rd }}$ quarter

No	$\begin{gathered} \mathrm{T}-\mathrm{P} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering T-P (1)	Inverse order T-P (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{i})$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
79	13.37	3.34	15.00	11.65	0.3989	4.65
80	12.99	5.06	14.71	9.64	0.2755	2.66
81	14.71	5.89	14.27	8.38	0.2380	1.99
82	12.90	5.98	13.44	7.46	0.2104	1.57
83	5.89	6.26	13.41	7.16	0.1880	1.35
84	5.98	7.02	13.37	6.34	0.1689	1.07
85	8.01	7.89	12.99	5.10	0.1520	0.78
86	7.02	8.01	12.90	4.89	0.1366	0.67
87	8.71	8.10	12.84	4.73	0.1225	0.58
88	8.27	8.27	12.72	4.46	0.1092	0.49
89	10.66	8.57	12.38	3.81	0.0967	0.37
90	11.55	8.58	11.62	3.03	0.0848	0.26
91	13.41	8.67	11.57	2.90	0.0733	0.21
92	14.27	8.71	11.56	2.85	0.0622	0.18
93	3.34	9.05	11.55	2.50	0.0515	0.13
94	12.38	9.12	11.12	2.00	0.0409	0.08
95	11.62	9.42	11.07	1.65	0.0305	0.05
96	10.92	10.36	10.96	0.60	0.0203	0.01
97	5.06	10.66	10.93	0.28	0.0101	0.00
98	8.58	10.92	10.92	0.00		$\mathrm{b}=17.09$
99	10.36	10.93	10.66	-0.28		$\mathrm{S}=2.82$
100	9.42	10.96	10.36	-0.60		
101	10.96	11.07	9.42	-1.65		
102	11.07	11.12	9.12	-2.00		$\mathrm{W}=0.968>0.939$
103	8.10	11.55	9.05	-2.50		
104	11.56	11.56	8.71	-2.85		F- Satisfied
105	13.44	11.57	8.67	-2.90		
106	11.12	11.62	8.58	-3.03		
107	15.00	12.38	8.57	-3.81		
108	10.93	12.72	8.27	-4.46		
109	12.72	12.84	8.10	-4.73		
110	8.57	12.90	8.01	-4.89		
111	8.67	12.99	7.89	-5.10		
112	6.26	13.37	7.02	-6.34		
113	7.89	13.41	6.26	-7.16		
114	9.12	13.44	5.98	-7.46		
115	9.05	14.27	5.89	-8.38		
116	11.57	14.71	5.06	-9.64		
117	12.84	15.00	3.34	-11.65		

Table (50): Shapiro-Wilk Test for the Data of T-P's $4^{\text {th }}$ quarter

No	$\begin{gathered} \mathrm{T}-\mathrm{P} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering T-P (1)	Inverse order T-P (2)	2-1	$a(n-1+i)$	$(2-1) \times \mathrm{a}_{(\mathrm{n}-1+\mathrm{i})}$
118	14.10	7.81	21.80	13.99	0.3989	5.58
119	10.50	8.32	20.02	11.70	0.2755	3.22
120	12.32	8.47	19.99	11.53	0.2380	2.74
121	7.81	8.53	16.03	7.49	0.2104	1.58
122	9.22	8.55	15.57	7.03	0.1880	1.32
123	8.32	8.84	14.64	5.80	0.1689	0.98
124	11.44	9.04	14.45	5.41	0.1520	0.82
125	8.47	9.22	14.14	4.92	0.1366	0.67
126	9.86	9.33	14.10	4.77	0.1225	0.58
127	12.71	9.49	13.73	4.24	0.1092	0.46
128	10.05	9.53	13.07	3.55	0.0967	0.34
129	9.33	9.86	12.76	2.91	0.0848	0.25
130	10.18	10.05	12.71	2.66	0.0733	0.20
131	9.49	10.18	12.71	2.53	0.0622	0.16
132	11.78	10.50	12.62	2.11	0.0515	0.11
133	12.16	11.08	12.43	1.35	0.0409	0.06
134	8.53	11.44	12.32	0.88	0.0305	0.03
135	8.84	11.46	12.22	0.76	0.0203	0.02
136	12.62	11.78	12.16	0.38	0.0101	0.00
137	12.71	12.07	12.07	0.00		$\mathrm{b}=19.12$
138	14.64	12.16	11.78	-0.38		$\mathrm{S}=3.28$
139	11.46	12.22	11.46	-0.76		
140	9.04	12.32	11.44	-0.88		
141	14.45	12.43	11.08	-1.35		$\mathrm{W}=0.891<0.939$
142	13.73	12.62	10.50	-2.11		
143	16.03	12.71	10.18	-2.53		
144	21.80	12.71	10.05	-2.66		I-- Did not Satisfied
145	12.43	12.76	9.86	-2.91		
146	8.55	13.07	9.53	-3.55		
147	9.53	13.73	9.49	-4.24		
148	12.76	14.10	9.33	-4.77		
149	12.07	14.14	9.22	-4.92		
150	11.08	14.45	9.04	-5.41		
151	19.99	14.64	8.84	-5.80		
152	15.57	15.57	8.55	-7.03		
153	12.22	16.03	8.53	-7.49		
154	13.07	19.99	8.47	-11.53		
155	14.14	20.02	8.32	-11.70		
156	20.02	21.80	7.81	-13.99		

3.5.4.3 order of (AR)

For water quality like King Talal Dam, the value of AR, which is expressed by the item (p) shall not be more than 1 since the autocorrelation for a particle of T-P does not need more than 1 month till it analyze (Viessman and Lewis, 1996). From Figure (48) it can be seen that the value of AR is about 4 , but the value of p that will be used is 1 for the T-P variable.

Figure (48) Autocorrelation Function for T-P Variable

3.5.4.4 order of moving average (MA)

After finding the value of AR , which was 1 , the following procedure is to determine the value of MA, which is expressed by the item (q). Figure (49) shows the change between the real data of the variable T-P and it's moving average with different lengths of p .

Figure (49) Moving Average of T-P with Different Values of (p)

The moving average can be determined from Figure (49) when the difference between the previous length of p and the followed one have a small difference and that occurred when the value of p was 4 (as shown in Figure (49)), so the T-P variable has a value of MA(4).

3.5.4.5

 order of (I)The last coefficient of ARIMA's parameters is the integrated model (I), which expressed by the item (d). The data should be differenced when there is trend or shift or seasonality in the data, otherwise there is no need to make differentiation for the data. Figure (50) consists of four graphs, which provides a good idea if there is a difference between the original, detrended, seasonally adjusted, and seasonally adjusted and detrended data. It is shown from these four graphs that there are a difference between the original figure and the detrended one but in the seasonal case they are almost the same, which means that the detrended effect could take into consideration

Figure (50): Component Analysis for T-P mg/l

Two season; summer and winter can affect seasonality in Jordan, so if the data has no seasonality effect, then the value of $\mathrm{d}=0$ and if we have seasonality effect then the value of $d=2$. Figures (51), and (52) provide ARIMA model diagnostics for ARIMA $=(1,0,4)$ and $(1,2,4)$. It is seen from the two graphs that the residual in Figure (52) is less than Figure (51) so the coefficients of ARIMA that will be used are $(1,2,4)$

Figure (51): ARIMA (1,0,4) Model Diagnostic for T-P
\qquad
ARIMA Model Diagnostics: Data001\$T.P.....mg.I

Figure (52): ARIMA (1,2,4) Model Diagnostic for T-P

3.5.4.6

forecasting future values

The following procedure will be used in the forecasting: The values of the data collected will be divided into two parts, the first part consists of 90% of the real data, and this data will be analyzed and predicted. And the second part consists of the last 10% of the real data, and this part will be compared with the predicted values in the mean. The best model is the one that gives the least error in mean.

A- deterministic forecasting

A1- linear regression model

The regression of the additive linear trend is shown in Figure (53).

Figure (53): Trend Analysis for T-P mg/l

It can be observed from the above figure and equation of the linear trend that the data is increasing. Table (51) shows the linear prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (51): The values of the predicted and actual data by linear regression for T-P variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	11.51	14.45
2	142	11.55	13.73
3	143	11.59	16.03
4	144	11.63	9.78
5	145	11.67	12.43
6	146	11.72	8.55
7	147	11.76	9.53
8	148	11.80	12.76
9	149	11.84	12.07
10	150	11.88	11.08
11	151	11.92	19.99
12	152	11.97	15.57
13	153	12.01	12.22
14	154	12.05	13.07
15	155	12.09	14.14
16	156	12.13	20.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 13.9%, that the linear trend model did not satisfy the forecasting for the T-P variable.

A2- quadratic regression model

The regression of the additive quadratic trend is shown in Figure (54).

Figure (54):Trend Analysis for T-P mg/l
It can be observed from the above figure and the equation of the quadratic trend that the data is increasing upward. Table (52) shows the quadratic prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (52): The values of the predicted and actual data by quadratic regression for T-P variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	11.16	14.45
2	142	11.19	13.73
3	143	11.21	16.03
4	144	11.24	9.78
5	145	11.27	12.43
6	146	11.29	8.55
7	147	11.32	9.53
8	148	11.34	12.76
9	149	11.37	12.07
10	150	11.39	11.08
11	151	11.42	19.99
12	152	11.44	15.57
13	153	11.47	12.22
14	154	11.49	13.07
15	155	11.52	14.14
16	156	11.54	20.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 18.6%, that the quadratic trend model did not satisfy the forecasting for the T-P variable.

A3- Exponential Growth Regression Model

The regression of the additive exponential growth trend model is shown in Figure (55).

Figure (55): Trend Analysis for T-P mg/l
It can be observed from the above figure and equation of the exponential growth trend that the data has an increasing trend. Table (53) shows the exponential growth prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (53): The values of the predicted and actual data by exponential growth regression for T-P variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	11.72	14.45
2	142	11.79	13.73
3	143	11.85	16.03
4	144	11.92	9.78

5	145	11.99	12.43
6	146	12.05	8.55
7	147	12.12	9.53
8	148	12.19	12.76
9	149	12.26	12.07
10	150	12.33	11.08
11	151	12.39	19.99
12	152	12.46	15.57
13	153	12.53	12.22
14	154	12.60	13.07
15	155	12.67	14.14
16	156	12.75	20.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 10.1%, that the exponential growth trend model did not satisfy the forecasting for the T-P variable.

A4- Single Exponential Smoothing Model

The regression of the additive single exponential smoothing trend model is shown in Figure (56).

Figure (56): Single Exponential Smoothing for T-P mg/l
Table (54) shows the single exponential smoothing prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (54) it
can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (54): Forecasted, lower, upper and actual values by single exponential smoothing for T-P variable

Row	Period (month)	$\frac{\text { Forecast }}{\underline{\mathrm{mg} / \mathrm{l}}}$	$\frac{\text { Lower }}{\underline{\mathrm{mg} / \mathrm{l}}}$	Upper mg/l	$\frac{\text { Actual }}{\underline{\mathrm{mg} / \mathrm{l}}}$
1	141	10.30	6.11	14.49	14.45
2	142	10.30	6.11	14.49	13.73
3	143	10.30	6.11	14.49	16.03
4	144	10.30	6.11	14.49	9.78
5	145	10.30	6.11	14.49	12.43
6	146	10.30	6.11	14.49	8.55
7	147	10.30	6.11	14.49	9.53
8	148	10.30	6.11	14.49	12.76
9	149	10.30	6.11	14.49	12.07
10	150	10.30	6.11	14.49	11.08
11	151	10.30	6.11	14.49	19.99
12	152	10.30	6.11	14.49	15.57
13	153	10.30	6.11	14.49	12.22
14	154	10.30	6.11	14.49	13.07
15	155	10.30	6.11	14.49	14.14
16	156	10.30	6.11	14.49	20.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 30.7%, that the simple exponential smoothing trend model has not satisfied the forecasting for the T-P variable.

B- stochastic forecasting

B1- auto regression model

Table (55) shows the $\mathrm{AR}(1)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (55) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (55): Forecasted, lower, upper and actual values by AR(1) for T-P variable

Row	$\underline{\text { Period }}$	Forecast	Lower	Upper	Actual
	(month)	$\underline{\mathrm{mg} / \mathrm{l}}$	$\underline{\mathrm{mg} / \mathrm{l}}$	mg/l	mg/l
1	141	8.86	4.47	12.25	14.45
2	142	8.74	3.44	14.05	13.73
3	143	8.66	2.99	14.34	16.03
4	144	8.61	2.77	14.45	9.78
5	145	8.57	2.66	14.49	12.43
6	146	8.55	2.60	14.49	8.55
7	147	8.53	2.56	14.49	9.53
8	148	8.52	2.55	14.49	12.76
9	149	8.51	2.53	14.48	12.07
10	150	8.50	2.53	14.48	11.08
11	151	8.50	2.52	14.48	19.99
12	152	8.50	2.52	14.47	15.57
13	153	8.50	2.52	14.47	12.22
14	154	8.49	2.52	14.47	13.07
15	155	8.49	2.52	14.47	14.14
16	156	8.49	2.52	14.47	20.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 55.6%, that the $\mathrm{AR}(1)$ trend model has not satisfied the forecasting for the T-P variable.

B2- Moving Average Regression Model

The regression of the additive MA (4) trend model is shown in Figure (57).

Figure (57): Moving Average for T-P mg/l

Table (56) shows the $\mathrm{MA}(4)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (56) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Row	Period	Forecast	Lower	Upper	Actual
	(month)	mg/l	mg/l	mg/l	mg / l
1	141	12.41	7.06	17.76	14.45
2	142	12.41	7.06	17.76	13.73
3	143	12.41	7.06	17.76	16.03
4	144	12.41	7.06	17.76	9.78
5	145	12.41	7.06	17.76	12.43
6	146	12.41	7.06	17.76	8.55
7	147	12.41	7.06	17.76	9.53
8	148	12.41	7.06	17.76	12.76
9	149	12.41	7.06	17.76	12.07
10	150	12.41	7.06	17.76	11.08
11	151	12.41	7.06	17.76	19.99
12	152	12.41	7.06	17.76	15.57
13	153	12.41	7.06	17.76	12.22
14	154	12.41	7.06	17.76	13.07
15	155	12.41	7.06	17.76	14.14
16	156	12.41	7.06	17.76	20.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 8.5%, that the MA(4) trend model has satisfied the forecasting for the T-P variable.

B3- ARIMA modeling

Table (57) shows the ARIMA(1,2,4) prediction values for the next 10% of the predicted and the real data, which equals to 16 observations. In Table (57) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (57): Forecasted, lower, upper and actual values by ARIMA(1,2,4) for T-P variable

Row	Period	Forecast	Lower	Upper	Actual
	(month)	mg/l	mg/l	mg/l	mg/l
1	141	9.45	4.78	14.13	14.45
2	142	9.85	3.98	15.71	13.73
3	143	10.05	3.05	17.05	16.03
4	144	9.98	2.26	17.69	9.78
5	145	10.06	1.51	18.60	12.43
6	146	10.05	0.81	19.30	8.55
7	147	10.10	0.13	20.06	9.53
8	148	10.38	0.00	20.75	12.76
9	149	10.72	0.00	21.44	12.07
10	150	11.06	0.00	22.11	11.08
11	151	11.39	0.00	22.77	19.99
12	152	11.71	0.00	23.41	15.57
13	153	12.03	0.00	24.05	12.22
14	154	12.34	0.00	24.68	13.07
15	155	12.66	0.00	25.31	14.14
16	156	12.96	0.00	25.92	20.02

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 23.2%, that the $\operatorname{ARIMA}(1,2,4)$ trend model did not satisfy the forecasting for the T-P variable.

3.5.4.7 results of prediction

The results of error are summarized in the following Table (58), which provides a summary of the models name used in the prediction and also it provides the percentage error.

Table (58) : Percentage of error of each model for T-P variable

Model	Percentage of Mean Error
Linear Method	13.9%
Quadratic Method	18.6%
Exponential Growth Method	10.1%
Simple Exponential Smoothing	30.7%
Auto Regression, AR(1)	55.6%
Moving Average, MA(4)	8.50%
ARIMA (1,2,4)	23.2%

The previous Table (58) shows that the method, which has satisfied the 10% acceptable prediction limits, is the Moving Average MA(4) model. The best model that gave the least error is the Moving Average (4) method.

3.5.5 Total nitrogen (T-N) variable:

The consequences that were used to analyze the T-N variable were as follows:

3.5.5.1 detection of missing data and outliers:

From the table (1) it is observed that the data do not contain any missing data, so the second step is to find the outliers, data should be drawn in a scatter diagram (see Figure (58)) so that outliers will be clearly observed. These data, which contains 156 observations from January 1988 till December 2000, have a clearly trend after the month July 1993. So the data will be separated into two parts. The first one is before July 1993, and the second one after it. In the first part there is just one low data that could be an outlier and this data is in August 1988. In the second part it can be seen that the data approximately do not have any outlier. In August 1988 the amount of rainfall was somehow high so the data is assumed to be a real data and not an outlier (Appendix (1)). So the real data is on August 1988, and there is not any outlier according to the data.

Figure (58): Original Data of T-N mg/l

Figure (59) shows the outliers for the seasonal trends for the original and the residual data, one can conclude from the charts that there are three outliers in the residual data in the seasonal condition. Also figure (59) shows the variation in the data for the same month, it can be observe that the variation was the highest on January, and was the lowest on October. Another three outliers were found in the seasonal graph, they are July 1995, August 1996, and January 1999, these three outliers were not observed in the original data. In July 1995, and August 1996 the amount of rainfall was low, these two months were treated as real data. In January 1999 the amount of rainfall was high (Appendix (1)), the data was treated as an outlier, the adjustment was made according to the average monthly way.

Figure (59) Outliers of Seasonal Analysis for T-N Variable

After adjustment the outliers, the new adjusted data are plotted in Figure (60), the figure shows that their still outliers but these outliers cannot be omitted because they are real data so it can influence the statistics results. While comparing the old data
(Figure 58) with the new adjusted data (Figure 60) it can be observed that two figures are quite the same and they have the same trend, so the effect of the outliers on the data was so little.

Figure (60): The New Adjusted Data of T-N mg/l

3.5.5.2 normality of data

In this section, normality of data will be checked through four procedures; first one is by drawing a histogram for Weibull's distribution model, second one is through calculating the coefficient of variance, the third one is through calculating the Kurtosis coefficient, and the fourth one is through calculating the Shapiro-Wilk test. From these four procedures, if the data was not normal then a lognormal transformation to the data will be made.

A- Weibull's distribution model histogram:

Data will be transformed to the average monthly value for the T-N variable; the calculated values were as follows

Month Jan. Feb. Mar Apr. May Jun. Jul. Aug Sep. Oct. Nov Dec.
$\begin{array}{lllllllllllll}\mathrm{T}-\mathrm{N} ~ \mathrm{mg} / \mathrm{l} & 43.2 & 38.8 & 42.6 & 43.0 & 46.0 & 42.3 & 41.1 & 41.2 & 43.1 & 49.0 & 51.8 & 51.7\end{array}$

The Weibull's distribution histogram is drawn for these twelve data. It can be observed from Figure (61) that the data of T-N is quite normal and there is a little skewness to the left and bulked to the right, but in general the graph gives an indication that the data is normal.

Figure (61) : Weibull Distribution Model Histogram

B- coefficient of variation (COV), preliminary test:

The data were divided into four quarters; each quarter consists of 39 data. Table (59) provides the value of the mean, variance, standard deviation, and the coefficient of variation for the T-N variable.

Table (59): The coefficient of variable for T-N

	MEAN	VARIANCE	ST. DE. (S)	C.O.V.
T-N ($1^{\text {st }}$ Quarter $)$	30.9	98.2	9.9	0.3
T-N (2 $2^{\text {nd }}$ Quarter $)$	30.9	79.3	8.9	0.3
T-N ($3^{\text {rd }}$ Quarter $)$	54.1	121.2	11.0	0.2
T-N ($4^{\text {th }}$ Quarter $)$	62.7	92.2	9.6	0.2

It can be shown from the table that the value of the coefficient of variation for each quarter is less than 1 , which means that each quarter of the data has a little skewed (either to right or left), so the total data of the T-N variable has less skewness than each of the four T-N quarters, it can be concluded that the T-N variable does not have skewness.

C- Kurtosis coefficient (peakedness), vertical test:

To find the Kurtosis coefficient, one should find the value of K , which depends on the fourth moment about the mean and the number of samples, so that the Kurtosis can be calculated. The Kurtosis will give a good indication if the distribution is leptokurtic or platykutric. The data was divided into four quarters, Table (60) provides the values of the Kurtosis coefficient for each quarter and it provides also the calculations needed to calculate the Kurtosis coefficient, which they are: the mean, the variance or standard error, the value of K , and the Kurtosis coefficient.

Table (60): The Kurtosis Coefficient for T-N

	MEAN	VARIANCE	ST. DE. (S)	K	Kurtosis Coeff. C_{K}
T-N (1st Quarter)	30.9	98.2	9.9	28379.0	-0.1
T-N (2 ${ }^{\text {nd }}$ Quarter)	30.9	79.3	8.9	14628.0	-0.7
T-N (3 $3^{\text {rd }}$ Quarter)	54.1	121.2	11.0	41056.8	-0.2
T-N (4 $4^{\text {th }}$ Quarter $)$	62.7	92.2	9.6	20660.6	-0.6

From table (60) one can observe that the data in each quarter normally distributed (mesokurtic). The total data of the T-N variable can be assumed to be normally distributed (mesokurtic).

D- Shapiro-Wilk test

This is another test to show that the data we have is normal or not. Data that have been collected were divided into equal quarters, the value of $\left(a_{n-1+1}\right)$, was taken for 20 data since the value of $n-1+i$ was equal to 20 , the value of $\left(a_{n-1+1}\right)$ was taken from appendix (2). The Shapiro-Wilk value was compared with the five percent critical value for sample size 20 in Appendix (3), if the value of the Shapiro-Wilk test was greater than it then the data will not show evidence of nonnormality.

From the Tables (61), (62), (63), and (64) it has been shown that the data in each quarter was normal. It can be say that the whole data has a tendency to be normal distribution. It can be safely say that TSS variable is normally distributed.

Table (61): Shapiro-Wilk Test for the Data of T-N's $1^{\text {st }}$ quarter

No	$\begin{gathered} \mathrm{T}-\mathrm{N} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering T-N (1)	Inverse order T-N (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{i})$	(2-1) $\mathrm{x} \mathrm{a}_{(\mathrm{n}-1+\mathrm{i})}$
1	52.70	11.00	52.70	41.70	0.3989	16.63
2	21.50	13.90	51.94	38.04	0.2755	10.48
3	27.30	19.10	47.40	28.30	0.2380	6.74
4	20.20	19.90	45.46	25.56	0.2104	5.38
5	23.70	20.20	43.30	23.10	0.1880	4.34
6	20.20	20.20	42.90	22.70	0.1689	3.83
7	13.90	20.21	40.80	20.59	0.1520	3.13
8	11.00	21.50	39.40	17.90	0.1366	2.45
9	19.90	22.13	36.93	14.79	0.1225	1.81
10	27.10	22.80	36.10	13.30	0.1092	1.45
11	42.90	23.21	35.75	12.55	0.0967	1.21
12	34.60	23.70	35.20	11.50	0.0848	0.98
13	23.21	25.90	35.00	9.10	0.0733	0.67
14	30.02	27.10	34.60	7.50	0.0622	0.47
15	35.75	27.10	33.57	6.47	0.0515	0.33
16	36.93	27.30	32.96	5.66	0.0409	0.23
17	33.57	28.24	32.50	4.26	0.0305	0.13
18	20.21	29.00	32.50	3.50	0.0203	0.07
19	27.10	30.02	31.40	1.37	0.0101	0.01
20	22.13	30.70	30.70	0.00		$\mathrm{b}=60.35$
21	28.24	31.40	30.02	-1.37		$\mathrm{S}=9.91$
22	32.96	32.50	29.00	-3.50		
23	45.46	32.50	28.24	-4.26		
24	51.94	32.96	27.30	-5.66		$\mathrm{W}=0.976>0.939$
25	47.40	33.57	27.10	-6.47		
26	29.00	34.60	27.10	-7.50		= Satisfied
27	30.70	35.00	25.90	-9.10		
28	35.20	35.20	23.70	-11.50		
29	32.50	35.75	23.21	-12.55		
30	31.40	36.10	22.80	-13.30		
31	25.90	36.93	22.13	-14.79		
32	22.80	39.40	21.50	-17.90		
33	19.10	40.80	20.21	-20.59		
34	32.50	42.90	20.20	-22.70		
35	40.80	43.30	20.20	-23.10		
36	43.30	45.46	19.90	-25.56		
37	39.40	47.40	19.10	-28.30		
38	36.10	51.94	13.90	-38.04		
39	35.00	52.70	11.00	-41.70		

Table (62): Shapiro-Wilk Test for the Data of T-N's $2^{\text {nd }}$ quarter

No	$\begin{gathered} \mathrm{T}-\mathrm{N} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering T-N (1)	Inverse order T-N (2)	2-1	$a(n-1+i)$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
40	29.00	17.00	49.55	32.55	0.3989	12.98
41	27.70	17.30	48.20	30.91	0.2755	8.51
42	21.30	18.50	43.12	24.62	0.2380	5.86
43	19.50	18.50	41.90	23.40	0.2104	4.92
44	28.00	19.00	41.00	22.00	0.1880	4.14
45	27.19	19.50	40.71	21.21	0.1689	3.58
46	31.00	21.00	40.68	19.68	0.1520	2.99
47	41.00	21.25	40.62	19.37	0.1366	2.65
48	39.50	21.30	39.50	18.20	0.1225	2.23
49	17.00	25.20	38.60	13.40	0.1092	1.46
50	19.00	26.20	38.29	12.09	0.0967	1.17
51	21.00	26.80	37.51	10.71	0.0848	0.91
52	28.80	27.00	36.52	9.52	0.0733	0.70
53	27.00	27.19	35.76	8.57	0.0622	0.53
54	25.20	27.51	35.00	7.49	0.0515	0.39
55	21.25	27.70	33.22	5.52	0.0409	0.23
56	17.30	27.70	31.00	3.30	0.0305	0.10
57	26.20	27.88	30.55	2.67	0.0203	0.05
58	35.00	28.00	29.00	1.00	0.0101	0.01
59	26.80	28.80	28.80	0.00		$\mathrm{b}=53.41$
60	18.50	29.00	28.00	-1.00		$\mathrm{S}=8.90$
61	18.50	30.55	27.88	-2.67		
62	27.51	31.00	27.70	-3.30		
63	27.70	33.22	27.70	-5.52		$\mathrm{W}=0.947>0.939$
64	27.88	35.00	27.51	-7.49		
65	30.55	35.76	27.19	-8.57		Satisfied
66	33.22	36.52	27.00	-9.52		
67	35.76	37.51	26.80	-10.71		
68	38.29	38.29	26.20	-12.09		
69	40.71	38.60	25.20	-13.40		
70	43.12	39.50	21.30	-18.20		
71	41.90	40.62	21.25	-19.37		
72	40.68	40.68	21.00	-19.68		
73	38.60	40.71	19.50	-21.21		
74	36.52	41.00	19.00	-22.00		
75	40.62	41.90	18.50	-23.40		
76	37.51	43.12	18.50	-24.62		
77	49.55	48.20	17.30	-30.91		
78	48.20	49.55	17.00	-32.55		

Table (63): Shapiro-Wilk Test for the Data of T-N's $3{ }^{\text {rd }}$ quarter

No	$\begin{gathered} \mathrm{T}-\mathrm{N} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Ordering T-N (1)	Inverse order T-N (2)	2-1	$a(n-1+i)$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
79	48.81	36.11	79.33	43.22	0.3989	17.24
80	47.46	37.09	76.76	39.67	0.2755	10.93
81	50.20	37.54	71.69	34.15	0.2380	8.13
82	53.74	39.48	70.23	30.75	0.2104	6.47
83	40.27	40.27	69.23	28.96	0.1880	5.44
84	36.11	43.98	68.84	24.86	0.1689	4.20
85	52.10	44.24	66.05	21.81	0.1520	3.32
86	37.09	46.40	65.54	19.15	0.1366	2.62
87	47.06	47.06	63.41	16.35	0.1225	2.00
88	47.35	47.35	63.27	15.93	0.1092	1.74
89	50.24	47.46	61.38	13.91	0.0967	1.35
90	47.91	47.91	58.54	10.63	0.0848	0.90
91	69.23	48.26	57.55	9.30	0.0733	0.68
92	39.48	48.81	55.98	7.17	0.0622	0.45
93	50.37	49.15	55.88	6.73	0.0515	0.35
94	58.54	49.74	55.30	5.56	0.0409	0.23
95	49.76	49.76	54.52	4.76	0.0305	0.15
96	55.98	50.20	53.74	3.54	0.0203	0.07
97	46.40	50.24	52.10	1.85	0.0101	0.02
98	44.24	50.37	50.37	0.00		$\mathrm{b}=66.27$
99	49.74	52.10	50.24	-1.85		$\mathrm{S}=11.01$
100	55.30	53.74	50.20	-3.54		
101	71.69	54.52	49.76	-4.76		
102	65.54	55.30	49.74	-5.56		$\mathrm{W}=0.954>0.939$
103	54.52	55.88	49.15	-6.73		
104	79.33	55.98	48.81	-7.17		I- Satisfied
105	68.84	57.55	48.26	-9.30		
106	70.23	58.54	47.91	-10.63		
107	76.76	61.38	47.46	-13.91		
108	63.27	63.27	47.35	-15.93		
109	66.05	63.41	47.06	-16.35		
110	43.98	65.54	46.40	-19.15		
111	55.88	66.05	44.24	-21.81		
112	37.54	68.84	43.98	-24.86		
113	48.26	69.23	40.27	-28.96		
114	63.41	70.23	39.48	-30.75		
115	49.15	71.69	37.54	-34.15		
116	61.38	76.76	37.09	-39.67		
117	57.55	79.33	36.11	-43.22		

Table (64): Shapiro-Wilk Test for the Data of T-N's $4^{\text {th }}$ quarter

No	$\begin{gathered} \mathrm{T}-\mathrm{N} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	$\begin{aligned} & \text { Ordering } \\ & \text { T-N } \\ & \text { (1) } \end{aligned}$	Inverse order T-N (2)	2-1	$a(n-1+i)$	$(2-1) \mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
118	62.05	45.94	79.85	33.90	0.3989	13.52
119	60.84	46.58	79.51	32.93	0.2755	9.07
120	52.56	47.96	79.45	31.49	0.2380	7.49
121	53.29	50.32	77.60	27.28	0.2104	5.74
122	45.94	51.78	77.49	25.72	0.1880	4.83
123	51.78	52.56	76.89	24.33	0.1689	4.11
124	47.96	53.03	73.67	20.64	0.1520	3.14
125	57.36	53.29	72.22	18.93	0.1366	2.59
126	53.62	53.62	69.34	15.72	0.1225	1.93
127	54.28	54.28	68.63	14.35	0.1092	1.57
128	46.58	54.41	67.00	12.60	0.0967	1.22
129	53.03	57.36	66.51	9.15	0.0848	0.78
130	57.55	57.55	66.41	8.86	0.0733	0.65
131	65.72	57.92	66.07	8.15	0.0622	0.51
132	76.89	59.50	65.72	6.22	0.0515	0.32
133	66.41	59.85	64.68	4.83	0.0409	0.20
134	66.51	60.84	64.64	3.80	0.0305	0.12
135	68.63	61.80	63.13	1.33	0.0203	0.03
136	77.60	62.05	62.58	0.53	0.0101	0.01
137	66.07	62.11	62.11	0.00		$\mathrm{b}=57.81$
138	62.11	62.58	62.05	-0.53		$\mathrm{S}=9.60$
139	50.32	63.13	61.80	-1.33		
140	61.80	64.64	60.84	-3.80		
141	54.41	64.68	59.85	-4.83		$\mathrm{W}=0.954>0.939$
142	59.50	65.72	59.50	-6.22		
143	72.22	66.07	57.92	-8.15		
144	79.45	66.41	57.55	-8.86		- $=$ Satisfied
145	63.13	66.51	57.36	-9.15		
146	67.00	67.00	54.41	-12.60		
147	62.58	68.63	54.28	-14.35		
148	77.49	69.34	53.62	-15.72		
149	79.51	72.22	53.29	-18.93		
150	57.92	73.67	53.03	-20.64		
151	64.64	76.89	52.56	-24.33		
152	59.85	77.49	51.78	-25.72		
153	64.68	77.60	50.32	-27.28		
154	73.67	79.45	47.96	-31.49		
155	69.34	79.51	46.58	-32.93		
156	79.85	79.85	45.94	-33.90		

3.5.5.3 order of (AR)

For water quality like King Talal Dam, the value of AR, which is expressed by the item (p) shall not be more than 1 since the autocorrelation for a particle of T-N does not need more than 1 month till it analyze (Viessman and Lewis, 1996). From Figure (62) it can be seen that the autocorrelation between data is high and that means that the data has random distributions, but the value of p that will be used is 1 for the $\mathrm{T}-\mathrm{N}$ variable.

Figure (62) Autocorrelation Function for T-N Variable

3.5.5.4
 order of moving average (MA)

After finding the value of AR, which was 1, the following procedure is to determine the value of MA, which is expressed by the item (q). Figure (63) shows the change between the real data of the variable T-N and it's moving average with different lengths of p .

Figure (63) Moving Average of T-N with Different Values of (p)

The moving average can be determined from Figure (63) when the difference between the previous length of p and the followed one have a small difference and that occurred when the value of p was 5 (as shown in Figure (63)), so the T-N variable has a value of MA (5).

3.5.5.5

 order of (I)The last coefficient of ARIMA's parameters is the integrated model (I), which expressed by the item (d). The data should be differenced when there is trend or shift or seasonality in the data, otherwise there is no need to make differentiation for the data. Figure (64) consists of four graphs, which provides a good idea if there is a difference between the original, detrended, seasonally adjusted, and seasonally adjusted and detrended data. It is shown from these four graphs that there are a difference between the original figure and the detrended one but in the seasonal case they are almost the same, which means that the detrended effect should be taken into consideration

Figure (64): Component Analysis for T-N mg/l

Two season; summer and winter can affect seasonality in Jordan, so if the data has no seasonality effect, then the value of $\mathrm{d}=0$ and if we have seasonality effect then the value of $d=2$. Figures (65), and (66) provide ARIMA model diagnostics for ARIMA $=(1,0,5)$ and $(1,2,5)$. It is seen from the two graphs that the residual in Figure (65) is quite the same as in Figure (66) so the coefficients of ARIMA that will be used are $(1,2,5)$

Figure (65): ARIMA (1,0,5) Model Diagnostics for T-N

Figure (66): ARIMA $(1,2,5)$ Model Diagnostics for T-N

3.5.5.6

 forecasting future valuesThe following procedure will be used in the forecasting: The values of the data collected will be divided into two parts, the first part consists of 90% of the real data, and this data will be analyzed and predicted. And the second part consists of the last 10% of the real data, and this part will be compared with the predicted values in the mean. The best model is the one that gives the least error in mean.

A- deterministic forecasting

A1- linear regression model

The regression of the additive linear trend is shown in Figure (67).

Figure (67): Trend Analysis for T-N mg/l
It can be observed from the above figure and equation of the linear trend that the data is increasing. Table (65) shows the linear prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (65): The values of the predicted and actual data by linear regression for T-N variable

Row Period (months) Forecasted $(\mathrm{mg} / \mathrm{l})$ 1 141 Actual $(\mathrm{mg} / \mathrm{l})$ 2 142 63.36 54.41 3 143 63.67 59.50 4 144 63.97 72.22 5 145 64.27 79.45 6 146 64.58 63.13 7 147 64.88 67.00 8 148 65.18 62.58 9 149 65.49 77.49 10 150 65.79 79.51 11 151 66.09 57.92 12 152 66.40 64.64 13 153 66.70 59.85 14 154 67.00 64.68 15 155 67.31 73.67 16 156 67.61 69.34		67.91	79.85

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 3.3%, that the linear trend model has satisfied the forecasting for the T-N variable.

A2- quadratic regression model

The regression of the additive quadratic trend is shown in Figure (68).

Figure (68): Trend Analysis for T-N mg/l

It can be observed from Figure (68) and the equation of the quadratic trend that the data is increasing upward. Table (66) shows the quadratic prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (66): The values of the predicted and actual data by quadratic regression for T-N variable

Row	Period (months)	Forecasted (mg/l)	Actual (mg/l)
1	141	68.95	54.41
2	142	69.49	59.50
3	143	70.03	72.22
4	144	70.58	79.45
5	145	71.13	63.13
6	146	71.68	67.00
7	147	72.24	62.58
8	148	72.80	77.49
9	149	73.37	79.51
10	150	73.93	57.92
11	151	74.51	64.64
12	152	75.08	59.85
13	153	75.66	64.68
14	154	76.24	73.67
15	155	76.82	69.34
16	156	77.41	79.85

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 7.2%, that the quadratic trend model has satisfied the forecasting for the T-N variable.

A3- exponential growth regression model

The regression of the additive exponential growth trend model is shown in Figure (69).

Figure (69): Trend Analysis for T-N mg/l

It can be observed from the above figure and equation of the exponential growth trend that the data has an increasing trend. Table (67) shows the exponential growth prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (67): The values of the predicted and actual data by exponential growth regression for $\mathrm{T}-\mathrm{N}$ variable

Row	Period (months)	Forecasted $(\mathrm{mg} / \mathrm{l})$		Actual $(\mathrm{mg} / \mathrm{l})$
1	141		66.50	54.41
2	142	67.01	59.50	
3	143		67.52	72.22
4	144	68.04	79.45	
5	145	68.56	63.13	
6	146	69.09	67.00	
7	147	69.62	62.58	
8	148	70.15	77.49	
9	149	70.69	79.51	
10	150	71.23	57.92	
11	151	71.78	64.64	
12	152	72.33	59.85	
13	153	72.88	64.68	
14	154	73.44	73.67	
15	155	74.01	69.34	
16	156	74.57	79.85	

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 3.7%, that the exponential growth trend model has satisfied the forecasting for the T-N variable.

A4- single exponential smoothing model

The regression of the additive single exponential smoothing trend model is shown in Figure (70).

Figure (70): Single Exponential Smoothing for T-N mg/l
Table (68) shows the single exponential smoothing prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (68) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (68): Forecasted, lower, upper and actual values by single exponential smoothing for T-N variable

Row	$\frac{\text { Period }}{(\text { month })}$	Forecast mg/l	$\frac{\text { Lower }}{\underline{\mathrm{mg} / \mathrm{l}}}$	Upper mg/l	$\frac{\text { Actual }}{\underline{\mathrm{mg} / \mathrm{l}}}$
1	141	59.60	43.59	75.61	54.41
2	142	59.60	43.59	75.61	59.50
3	143	59.60	43.59	75.61	72.22

4	144	59.60	43.59	75.61	79.45
5	145	59.60	43.59	75.61	63.13
6	146	59.60	43.59	75.61	67.00
7	147	59.60	43.59	75.61	62.58
8	148	59.60	43.59	75.61	77.49
9	149	59.60	43.59	75.61	79.51
10	150	59.60	43.59	75.61	57.92
11	151	59.60	43.59	75.61	64.64
12	152	59.60	43.59	75.61	59.85
13	153	59.60	43.59	75.61	64.68
14	154	59.60	43.59	75.61	73.67
15	155	59.60	43.59	75.61	69.34
16	156	59.60	43.59	75.61	79.85

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 13.8%, that the simple exponential smoothing trend model did not satisfy the forecasting for the T-N variable.

B- stochastic forecasting

B1- auto regression model

Table (69) shows the $\mathrm{AR}(1)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (69) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (69): Forecasted, lower, upper and actual values by AR(1) for T-N variable

Row	Period (month)	Forecast mg / l	Lower mg/l	Upper mg / l	Actua mg / l
1	141	59.77	42.30	77.23	54.41
2	142	58.00	34.87	81.14	59.50
3	143	56.47	29.84	83.10	72.22
4	144	55.14	26.15	84.12	79.45
5	145	53.98	23.34	84.63	63.13
6	146	52.98	21.14	84.82	67.00
7	147	52.10	19.39	84.82	62.58
8	148	51.34	17.99	84.70	77.49
9	149	50.68	16.85	84.52	79.51

10	150	50.11	15.92	84.30	57.92
11	151	49.62	15.16	84.07	64.64
12	152	49.18	14.53	83.84	59.85
13	153	48.81	14.00	83.61	64.68
14	154	48.48	13.56	83.40	73.67
15	155	48.20	13.19	83.20	69.34
16	156	47.95	12.88	83.02	79.85

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 30.3%, that the $\operatorname{AR}(1)$ trend model did not satisfy the forecasting for the T-N variable.

B2- moving average regression model

The regression of the additive MA (5) trend model is shown in Figure (71).

Figure (71): Moving Average for TSS mg/l

Table (70) shows the MA(5) prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (70) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (70): Forecasted, lower, upper and actual values by MA(5) for T-N variable

Row	Period	Forecast	Lower	Upper	Actual
Row	(month)	mg/l	$\underline{\mathrm{mg} / 1}$	mg/l	$\underline{\mathrm{mg} / 1}$
1	141	63.58	45.61	81.55	54.41
2	142	63.58	45.61	81.55	59.50
3	143	63.58	45.61	81.55	72.22
4	144	63.58	45.61	81.55	79.45
5	145	63.58	45.61	81.55	63.13
6	146	63.58	45.61	81.55	67.00
7	147	63.58	45.61	81.55	62.58
8	148	63.58	45.61	81.55	77.49
9	149	63.58	45.61	81.55	79.51
10	150	63.58	45.61	81.55	57.92
11	151	63.58	45.61	81.55	64.64
12	152	63.58	45.61	81.55	59.85
13	153	63.58	45.61	81.55	64.68
14	154	63.58	45.61	81.55	73.67
15	155	63.58	45.61	81.55	69.34
16	156	63.58	45.61	81.55	79.85

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 6.7%, that the MA(5) trend model has satisfied the forecasting for the T-N variable.

B3- ARIMA modeling

Table (71) shows the ARIMA $(1,2,5)$ prediction values for the next 10% of the predicted and the real data, which equals to 16 observations. In Table (71) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (71): Forecasted, lower, upper and actual values by ARIMA $(1,2,5)$ for T-N variable

Row	$\left.\frac{\text { Period }}{(m o n t h}\right)$	$\frac{\text { Forecast }}{}$		$\frac{\text { Lower }}{m g / l}$		$\frac{\text { Upper }}{\underline{\mathrm{mg} / \mathrm{l}}}$

7	147	70.13	40.67	99.60	62.58
8	148	70.27	39.37	101.17	77.49
9	149	72.10	39.70	104.50	79.51
10	150	72.26	38.47	106.05	57.92
11	151	74.11	38.88	109.35	64.64
12	152	74.29	37.71	110.88	59.85
13	153	76.17	38.18	114.17	64.68
14	154	76.37	37.06	115.69	73.67
15	155	78.28	37.58	118.98	69.34
16	156	78.50	36.50	120.50	79.85

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 4.8%, that the $\operatorname{ARIMA}(1,2,5)$ trend model has satisfied the forecasting for the T-N variable.

3.5.5.7 results of prediction

The results of error are summarized in the following Table (72), which provides a summary of the models name used in the prediction and also it provides the percentage error.

Table (72) : Percentage of error of each model for T-N variable

Model	Percentage of Mean Error
Linear Method	3.3%
Quadratic Method	7.2%
Exponential Growth Method	3.7%
Simple Exponential Smoothing	13.8%
Auto Regression, AR(1)	30.3%
Moving Average, MA(5)	6.7%
ARIMA (1,2,5)	4.8%

The previous Table (72) shows that the methods, which have satisfied the 10% acceptable prediction limits, are linear, quadratic, exponential growth, moving average MA(5), ARIMA $(1,2,5)$. The best model is ARIMA($1,2,5$) model.

3.5.6 Flow rate (Q) variable:

The consequences that were used to analyze the Q variable were as follows:

3.5.6.1 detection of missing data and outliers:

From table (1) it is observed that the data do not contain any missing data, so the second step is to find the outliers, data should be drawn in a scatter diagram (see Figure (72)) so that outliers will be clearly observed. These data, which contains 156 observations from January 1988 till December 2000, have approximately one outlier and it is in February 1992. It was observed that the rainfall in February 1992 was so high, and it is known that when the rainfall is high (Appendix (1)), the amount of flow rate will be high. So this data is assumed to be a real data and no adjustment will be made on it.

Figure (72): Origin Data of Zarqa River Flow (MCM/month)

Figure (73) shows the outliers for the seasonal trends for the original and the residual data, one can conclude from the charts that there are three outliers in the
residual data in the seasonal condition. Also Figure (73) shows the variation in the data for the same month, it can be observe that the variation was the highest on February, and was the lowest on September. Nine outliers were found in the seasonal graph, they are in February 1988, December 1991, January 1992, February 1992, March 1992, April 1992, May 1992, June 1992, and November 1994. The amount of rainfall on each of the nine months was high (Appendix (1)), the data was treated as a real data, no adjustment was made on the data. The new adjusted data will be the same as the original data.

Figure (73) Outliers of Seasonal Analysis for Q Variable

3.5.6.2 normality of data

In this section, normality of data will be checked through four procedures; first one is by drawing a histogram for Weibull's distribution model, second one is through
calculating the coefficient of variance, the third one is through calculating the Kurtosis coefficient, and the fourth one is through calculating the Shapiro-Wilk test. From these four procedures, if the data was not normal then a lognormal transformation to the data will be made.

A- Weibull's distribution model histogram:

Data will be transformed to the average monthly value for the Q variable; the calculated values were as follows

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Flow	11.4	14.4	9.9	6.1	5.4	4.7	4.1	4.1	4.0	4.5	7.0	10.9

The Weibull's distribution histogram is drawn for these twelve data. It can be observed from Figure (74) that the data of Q has skewness to the right and bulked to the left, so the data did not satisfy Weibull's Distribution Model for normality. A lognormal test should be made to the data.

Month Jan Feb Mar Apr May Jun Jul. Aug Sep Oct Nov Dec Log (flow) 1.06

Figure (74) : Weibull Distribution Model Histogram

Figure (75) : Weibull Distribution Model Histogram

The Weibull's distribution histogram for the lognormal of the flow is drawn for these twelve data. It can be observed from Figure (75) that the data of $\log (\mathrm{Q})$ has not skewness, so the data is normal.

B- coefficient of variation (COV), preliminary test:

The data were divided into four quarters; each quarter consists of 39 data.
Table (73) provides the value of the mean, variance, standard deviation, and the coefficient of variation for the $\log (\mathrm{Q})$ variable.

Table (73): The coefficient of variable for $\log (\mathrm{Q})$

| | MEAN | VARIANCE | ST. DE. | C.O.V $)$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\log (Q) \quad\left(1^{\text {st }}\right.$ Quarter $)$ | 0.702 | 0.051 | 0.226 | 0.32 |
| $\log (\mathrm{Q}) \quad\left(2^{\text {nd }}\right.$ Quarter $)$ | 0.877 | 0.095 | 0.309 | 0.35 |
| $\log (\mathrm{Q}) \quad\left(3^{\text {rd }}\right.$ Quarter $)$ | 0.788 | 0.041 | 0.202 | 0.26 |
| $\log (\mathrm{Q}) \quad\left(4^{\text {th }}\right.$ Quarter $)$ | 0.711 | 0.026 | 0.162 | 0.23 |

It can be shown from the table that the value of the coefficient of variation for all quarters were less than 1 ,it can be concluded that the variable $\log (\mathrm{Q})$ does not have skewness.

C- Kurtosis coefficient (peakedness), vertical test:

To find the Kurtosis coefficient, one should find the value of K , which depends on the fourth moment about the mean and the number of samples, so that the Kurtosis can be calculated. The Kurtosis will give a good indication if the distribution is leptokurtic or platykutric. The data was divided into four quarters, Table (74) provides the values of the Kurtosis coefficient for each quarter and it provides also the calculations needed to calculate the Kurtosis coefficient, which they are: the mean, the variance or standard error, the value of K , and the Kurtosis coefficient.

Table (74): The Kurtosis Coefficient for Log (Q)

	MEAN	VARIANCE	ST. DE. (S)	K	Kurtosis Coeff. C_{K}^{\prime}
$\log (\mathrm{Q})(1$ st Quarter)	0.702	0.051	0.226	0.016	3.1
$\log (\mathrm{Q})\left(2^{\text {nd }}\right.$ Quarter)	0.877	0.095	0.309	0.042	1.6
$\log (\mathrm{Q})\left(3^{\text {rd }}\right.$ Quarter $)$	0.788	0.041	0.202	0.009	2.4
$\log (\mathrm{Q})\left(4^{\text {th }}\right.$ Quarter $)$	0.711	0.026	0.162	0.002	-0.1

From table (74) one can observe that the data in quarter one, two, and three are quietly normally distributed, the fourth quarter is normally distributed. The total data of the $\log (\mathrm{Q})$ variable can be assumed to be normally distributed (mesokurtic).

D- Shapiro-Wilk test

This is another test to show that the data we have is normal or not. Data that have been collected were divided into equal quarters, the value of $\left(a_{n-l+1}\right)$, was taken for 20 data since the value of $n-1+i$ was equal to 20 , the value of $\left(a_{n-1+1}\right)$ was taken from appendix (2). The Shapiro-Wilk value was compared with the five percent critical value for sample size 20 in Appendix (3), if the value of the Shapiro-Wilk test was greater than it then the data will not show evidence of nonnormality.

Table (75): Shapiro-Wilk Test for the Data of \log (Q's) $1^{\text {st }}$ quarter

No	$\log (\mathrm{Q})$	Ordering	Inverse order			
	MCM/	Log (Q)	Log (Q)	2-1	$a(n-1+i)$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i}}$
	MONTH	(1)	(2)			
1	1.01	0.46	1.50	1.04	0.40	0.42
2	1.50	0.47	1.21	0.74	0.28	0.21
3	1.02	0.47	1.02	0.55	0.24	0.13
4	0.70	0.50	1.01	0.51	0.21	0.11
5	0.72	0.50	0.94	0.44	0.19	0.08
6	0.65	0.51	0.92	0.42	0.17	0.07
7	0.60	0.51	0.90	0.39	0.15	0.06
8	0.52	0.52	0.88	0.36	0.14	0.05
9	0.51	0.52	0.88	0.36	0.12	0.04
10	0.52	0.52	0.86	0.34	0.11	0.04
11	0.56	0.55	0.84	0.29	0.10	0.03
12	1.21	0.55	0.83	0.28	0.08	0.02
13	0.86	0.55	0.72	0.17	0.07	0.01
14	0.71	0.56	0.71	0.15	0.06	0.01
15	0.83	0.56	0.71	0.14	0.05	0.01
16	0.68	0.58	0.70	0.12	0.04	0.01
17	0.59	0.59	0.69	0.11	0.03	0.00
18	0.46	0.59	0.68	0.10	0.02	0.00
19	0.52	0.60	0.65	0.05	0.01	0.00
20	0.50	0.63	0.63	0.00		$\mathrm{b}=1.29$
21	0.47	0.65	0.60	-0.05		$\mathrm{S}=0.23$
22	0.47	0.68	0.59	-0.10		
23	0.55	0.69	0.59	-0.11		
24	0.69	0.70	0.58	-0.12		$\mathrm{W}=0.861<0.939$
25	0.88	0.71	0.56	-0.14		
26	0.88	0.71	0.56	-0.15	-	- Did not satisfy
27	0.90	0.72	0.55	-0.17		
28	0.71	0.83	0.55	-0.28		
29	0.59	0.84	0.55	-0.29		
30	0.50	0.86	0.52	-0.34		
31	0.56	0.88	0.52	-0.36		
32	0.55	0.88	0.52	-0.36		
33	0.51	0.90	0.51	-0.39		
34	0.55	0.92	0.51	-0.42		
35	0.58	0.94	0.50	-0.44		
36	0.63	1.01	0.50	-0.51		
37	0.92	1.02	0.47	-0.55		
38	0.84	1.21	0.47	-0.74		
39	0.94	1.50	0.46	-1.04		

Table (76): Shapiro-Wilk Test for the Data of \log (Q's) $2^{\text {nd }}$ quarter

No	$\begin{gathered} \log (\mathrm{Q}) \\ \text { MCM/ } \\ \text { MONTH } \end{gathered}$	Ordering $\log (\mathrm{Q})$ (1)	Inverse order Log (Q) (2)	2-1	$a(n-1+i)$	(2-1) $\mathrm{xa}_{(\mathrm{n}-1+\mathrm{i})}$
40	0.61	0.45	1.84	1.38	0.40	0.55
41	0.59	0.46	1.53	1.07	0.28	0.30
42	0.51	0.46	1.47	1.00	0.24	0.24
43	0.46	0.51	1.39	0.88	0.21	0.19
44	0.46	0.51	1.18	0.67	0.19	0.13
45	0.45	0.59	1.17	0.58	0.17	0.10
46	0.51	0.59	1.17	0.57	0.15	0.09
47	0.59	0.60	1.05	0.44	0.14	0.06
48	1.53	0.61	1.01	0.40	0.12	0.05
49	1.39	0.66	1.00	0.34	0.11	0.04
50	1.84	0.69	0.99	0.30	0.10	0.03
51	1.47	0.70	0.94	0.24	0.08	0.02
52	1.18	0.71	0.92	0.21	0.07	0.02
53	1.01	0.72	0.92	0.21	0.06	0.01
54	0.94	0.73	0.91	0.19	0.05	0.01
55	0.84	0.79	0.91	0.12	0.04	0.00
56	0.82	0.82	0.91	0.10	0.03	0.00
57	0.79	0.82	0.91	0.09	0.02	0.00
58	0.82	0.84	0.88	0.04	0.01	0.00
59	0.91	0.84	0.84	0.00		$\mathrm{b}=1.83$
60	1.17	0.88	0.84	-0.04		$\mathrm{S}=0.31$
61	1.17	0.91	0.82	-0.09		
62	1.05	0.91	0.82	-0.10		
63	1.00	0.91	0.79	-0.12		$\mathrm{W}=0.921<0.939$
64	0.91	0.91	0.73	-0.19		
65	0.91	0.92	0.72	-0.21		=- Did not satisfy
66	0.92	0.92	0.71	-0.21		
67	0.70	0.94	0.70	-0.24		
68	0.71	0.99	0.69	-0.30		
69	0.69	1.00	0.66	-0.34		
70	0.73	1.01	0.61	-0.40		
71	0.88	1.05	0.60	-0.44		
72	0.84	1.17	0.59	-0.57		
73	0.99	1.17	0.59	-0.58		
74	0.92	1.18	0.51	-0.67		
75	0.91	1.39	0.51	-0.88		
76	0.72	1.47	0.46	-1.00		
77	0.66	1.53	0.46	-1.07		
78	0.60	1.84	0.45	-1.38		

Table (77): Shapiro-Wilk Test for the Data of $\log (Q ’ s) 3^{\text {rd }}$ quarter

No	$\log (\mathrm{Q})$ MCM/ MONTH	Ordering $\log (\mathrm{Q})$ (1)	Inverse order $\log (\mathrm{Q})$ (2)	2-1	$a(n-1+i)$	(2-1) $\times \mathrm{a}_{(\mathrm{n}-1+\mathrm{i})}$
79	0.52	0.52	1.42	0.89	0.40	0.36
80	0.58	0.53	1.28	0.74	0.28	0.21
81	0.53	0.57	1.26	0.70	0.24	0.17
82	0.69	0.58	1.06	0.48	0.21	0.10
83	1.42	0.58	1.04	0.46	0.19	0.09
84	1.26	0.61	0.97	0.36	0.17	0.06
85	0.78	0.63	0.91	0.28	0.15	0.04
86	0.91	0.65	0.91	0.25	0.14	0.03
87	0.89	0.67	0.90	0.23	0.12	0.03
88	0.82	0.68	0.89	0.21	0.11	0.02
89	0.82	0.68	0.84	0.16	0.10	0.02
90	0.72	0.68	0.82	0.14	0.08	0.01
91	0.71	0.68	0.82	0.13	0.07	0.01
92	0.71	0.69	0.81	0.12	0.06	0.01
93	0.68	0.69	0.78	0.10	0.05	0.00
94	0.68	0.71	0.78	0.07	0.04	0.00
95	0.71	0.71	0.75	0.04	0.03	0.00
96	0.81	0.71	0.75	0.03	0.02	0.00
97	1.04	0.72	0.74	0.02	0.01	0.00
98	0.78	0.72	0.72	0.00		$\mathrm{b}=1.16$
99	0.97	0.74	0.72	-0.02		$\mathrm{S}=0.2$
100	0.75	0.75	0.71	-0.03		
101	0.75	0.75	0.71	-0.04		
102	0.65	0.78	0.71	-0.07		$\mathrm{W}=0.866<0.939$
103	0.61	0.78	0.69	-0.10		
104	0.58	0.81	0.69	-0.12		$\underline{=}$ - Did not satisfy
105	0.63	0.82	0.68	-0.13		
106	0.57	0.82	0.68	-0.14		
107	0.90	0.84	0.68	-0.16		
108	0.84	0.89	0.68	-0.21		
109	1.28	0.90	0.67	-0.23		
110	1.06	0.91	0.65	-0.25		
111	0.91	0.91	0.63	-0.28		
112	0.72	0.97	0.61	-0.36		
113	0.74	1.04	0.58	-0.46		
114	0.68	1.06	0.58	-0.48		
115	0.69	1.26	0.57	-0.70		
116	0.68	1.28	0.53	-0.74		
117	0.67	1.42	0.52	-0.89		

Table (78): Shapiro-Wilk Test for the Data of \log (Q's) $4^{\text {th }}$ quarter

No	$\log (\mathrm{Q})$ MCM/ MONTH	Ordering Log (Q) (1)	Inverse order Log (Q) (2)	2-1	$\mathrm{a}(\mathrm{n}-1+\mathrm{i})$	$(2-1) \times \mathrm{a}_{(\mathrm{n}-1+\mathrm{i})}$
118	0.66	0.50	1.09	0.59	0.40	0.24
119	0.84	0.52	1.03	0.51	0.28	0.14
120	1.03	0.52	1.01	0.49	0.24	0.12
121	1.01	0.53	0.99	0.46	0.21	0.10
122	0.78	0.54	0.99	0.45	0.19	0.08
123	0.99	0.55	0.94	0.40	0.17	0.07
124	0.77	0.56	0.86	0.30	0.15	0.05
125	0.56	0.56	0.85	0.29	0.14	0.04
126	0.54	0.58	0.85	0.27	0.12	0.03
127	0.58	0.60	0.84	0.24	0.11	0.03
128	0.61	0.60	0.82	0.22	0.10	0.02
129	0.64	0.61	0.78	0.17	0.08	0.01
130	0.65	0.62	0.77	0.15	0.07	0.01
131	0.65	0.63	0.74	0.12	0.06	0.01
132	0.65	0.63	0.72	0.08	0.05	0.00
133	0.86	0.64	0.68	0.04	0.04	0.00
134	0.99	0.64	0.67	0.03	0.03	0.00
135	0.72	0.64	0.66	0.02	0.02	0.00
136	0.62	0.65	0.65	0.01	0.01	0.00
137	0.68	0.65	0.65	0.00		$\mathrm{b}=0.95$
138	0.60	0.65	0.65	-0.01		$\mathrm{S}=0.16$
139	0.50	0.66	0.64	-0.02		
140	0.52	0.67	0.64	-0.03		
141	0.55	0.68	0.64	-0.04		$\mathrm{W}=0.902<0.939$
142	0.64	0.72	0.63	-0.08		
143	0.67	0.74	0.63	-0.12		
144	0.74	0.77	0.62	-0.15		Did not satisfy
145	1.09	0.78	0.61	-0.17		
146	0.82	0.82	0.60	-0.22		
147	0.85	0.84	0.60	-0.24		
148	0.63	0.85	0.58	-0.27		
149	0.63	0.85	0.56	-0.29		
150	0.60	0.86	0.56	-0.30		
151	0.56	0.94	0.55	-0.40		
152	0.52	0.99	0.54	-0.45		
153	0.53	0.99	0.53	-0.46		
154	0.85	1.01	0.52	-0.49		
155	0.64	1.03	0.52	-0.51		
156	0.94	1.09	0.50	-0.59		

From the Tables (75), (76), (77), and (78) it has been shown that the data in each quarter did not satisfy Shapiro-Wilk test for normality. So this test did not give any indication about the whole data if it is normal or not.

3.5.6.3 order of (AR)

For water quality like King Talal Dam, the value of $A R$, which is expressed by the item (p) shall not be more than 1 since the autocorrelation for a particle of $\log (\mathrm{Q})$ does not need more than 1 month till it analyze (Viessman and Lewis, 1996). From Figure (76) it can be seen that there is a high correlation for the first autocorrelation, the value of p that will be used is 1 for the Q variable.

Figure (76) Autocorrelation Function for Q Variable

3.5.6.4 order of moving average (MA)

After finding the value of AR, which was 1 , the following procedure is to determine the value of MA, which is expressed by the item (q). Figure (77) shows the change between the real data of the variable $\log (\mathrm{Q})$ and it's moving average with different lengths of p .

Figure (77) Moving Average of Log (Q) with Different Values of (p)

Cont. Figure (77) Moving Average of $\log (\mathrm{Q})$ with Different Values of (p)

The moving average can be determined from Figure (77) when the difference between the previous length of p and the followed one have a small difference and that occurred when the value of p was 6 (as shown in Figure (77)), so the $\log (\mathrm{Q})$ variable has a value of MA(6).

3.5.6.5 order of (I)

The last coefficient of ARIMA's parameters is the integrated model (I), which expressed by the item (d). The data should be differenced when there is trend or shift or seasonality in the data, otherwise there is no need to make differentiation for the data. Figure (78) consists of four graphs, which provides a good idea if there is a difference between the original, detrended, seasonally adjusted, and seasonally adjusted and detrended data. It is shown from these four graphs that there are a difference between the original figure and the seasonally one but in the detrended case they are almost the same, which means that the seasonally effect should be taken into consideration.

Figure (78): Component Analysis for \log (Q) MCM/month

Two season; summer and winter can affect seasonality in Jordan, so if the data has no seasonality effect, then the value of $\mathrm{d}=0$ and if we have seasonality effect then the value of $\mathrm{d}=2$. Figures (79), and (80) provide ARIMA model diagnostics for ARIMA $=(1,0,6)$ and $(1,2,6)$. It is seen from the two graphs that the residual in Figure (79) is quite the same as in Figure (80) so the coefficients of ARIMA that will be used are (1,2,6).

Figure (79): ARIMA (1,0,6) Model Diagnostic for $\log (\mathrm{Q})$
\qquad
ARIMA Model Diagnostics: Data001\$Log..Q..MCM.month

ACF Plot of Residuals

Figure (80): ARIMA (1,2,6) Model Diagnostic for $\log (\mathrm{Q})$

3.5.6.6 forecasting future values

The following procedure will be used in the forecasting: The values of the data collected will be divided into two parts, the first part consists of 90% of the real data, and this data will be analyzed and predicted. And the second part consists of the last
10% of the real data, and this part will be compared with the predicted values in the mean. The best model is the one that gives the least error in mean.

A- deterministic forecasting

A1- linear regression model

The regression of the additive linear trend is shown in Figure (81).

Figure (81):Trend Analysis for $\log (Q)$ MCM/month

It can be observed from the above figure and equation of the linear trend that the data is decreasing very slowly. Table (79) shows the linear prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (79): The values of the predicted and actual data by linear regression for $\log (\mathrm{Q})$ variable

Row	Period (months)	Forecasted (MCM)	Actual (MCM)
1	141	0.7753	0.55
2	142	0.7752	0.64
3	143	0.7752	0.67
4	144	0.7752	0.74
5	145	0.7752	1.09
6	146	0.7752	0.82
7	147	0.7751	0.85

8	148	0.7751	0.63
9	149	0.7751	0.63
10	150	0.7751	0.60
11	151	0.7750	0.56
12	152	0.7750	0.52
13	153	0.7750	0.53
14	154	0.7750	0.85
15	155	0.7749	0.64
16	156	0.7749	0.94

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 9.2%, that the linear trend model has satisfied the forecasting for $\log (\mathrm{Q})$ variable.

A2- quadratic regression model

The regression of the additive quadratic trend is shown in Figure (82).

Figure (82): Trend Analysis for log (Q) MCM/month
It can be observed from Figure (82) and the equation of the quadratic trend that the data is increasing upward and then it is decreasing. Table (80) shows the quadratic prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (80): The values of the predicted and actual data by quadratic regression for \log (Q) variable

Row	Period (months)	Forecasted (MCM)	Actual (MCM)
1	141	0.6523	0.55
2	142	0.6471	0.64
3	143	0.6418	0.67
4	144	0.6364	0.74
5	145	0.6309	1.09
6	146	0.6253	0.82
7	147	0.6197	0.85
8	148	0.6140	0.63
9	149	0.6082	0.63
10	150	0.6024	0.60
11	151	0.5965	0.56
12	152	0.5905	0.52
13	153	0.5844	0.53
14	154	0.5783	0.85
15	155	0.5721	0.64
16	156	0.5658	0.94

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 15.3%, that the quadratic trend model did not satisfy the forecasting for $\log (\mathrm{Q})$ variable.

A3- exponential growth regression model

The regression of the additive exponential growth trend model is shown in Figure (83).

Figure (83): Trend Analysis for $\log (Q) M C M /$ month

It can be observed from the above figure and equation of the exponential growth trend that the data has an increasing (very slowly) trend. Table (81) shows the exponential growth prediction of the next 10% of the predicted and real data, which equals to 16 observations.

Table (81): The values of the predicted and actual data by exponential growth regression for $\log (\mathrm{Q})$ variable

Row	Period (months)	Forecasted (MCM)	Actual (MCM)
1	141	0.7620	0.55
2	142	0.7623	0.64
3	143	0.7625	0.67
4	144	0.7628	0.74
5	145	0.7630	1.09
6	146	0.7633	0.82
7	147	0.7636	0.85
8	148	0.7638	0.63
9	149	0.7641	0.63
10	150	0.7643	0.60
11	151	0.7646	0.56
12	152	0.7649	0.52
13	153	0.7651	0.53
14	154	0.7654	0.85
15	155	0.7656	0.64
16	156	0.7659	0.94

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 7.9%, that the exponential growth trend model has satisfied the forecasting for the $\log (\mathrm{Q})$ variable.

A4- single exponential smoothing model

The regression of the additive single exponential smoothing trend model is shown in Figure (84).

Figure (84): Single Exponential Smoothing for $\log (Q)$ MCM/month
Table (82) shows the single exponential smoothing prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (82) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (82): Forecasted, lower, upper and actual values by single exponential smoothing for $\log (\mathrm{Q})$ variable

$\underline{\text { Row }}$	Period $\underline{(m o n t h})$	$\frac{\text { Forecast }}{\underline{(M C M)}}$	$\underline{\text { Lower }}$ $1(\mathrm{MCM})$	$\underline{(\mathrm{UPp})}$	$\underline{\underline{\text { Actual }}}$
1	141	0.5191	0.2226	0.8156	0.55
2	142	0.5191	0.2226	0.8156	0.64
3	143	0.5191	0.2226	0.8156	0.67

4	144	0.5191	0.2226	0.8156	0.74
5	145	0.5191	0.2226	0.8156	1.09
6	146	0.5191	0.2226	0.8156	0.82
7	147	0.5191	0.2226	0.8156	0.85
8	148	0.5191	0.2226	0.8156	0.63
9	149	0.5191	0.2226	0.8156	0.63
10	150	0.5191	0.2226	0.8156	0.60
11	151	0.5191	0.2226	0.8156	0.56
12	152	0.5191	0.2226	0.8156	0.52
13	153	0.5191	0.2226	0.8156	0.53
14	154	0.5191	0.2226	0.8156	0.85
15	155	0.5191	0.2226	0.8156	0.64
16	156	0.5191	0.2226	0.8156	0.94

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 35.6%, that the simple exponential smoothing trend model did not satisfy the forecasting for the Q variable.

B- stochastic forecasting

B1- auto regression model

Table (83) shows the $\mathrm{AR}(1)$ prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (83) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (83): Forecasted, lower, upper and actual values by $\mathrm{AR}(1)$ for Q variable

Row	Period (month)	Forecast (MCM)	Lower (MCM)	Upper (MCM)	Actual (MCM)
1	141	0.5975	0.2487	0.9463	0.55
2	142	0.6516	0.2262	1.0770	0.64
3	143	0.6894	0.2313	1.1474	0.67
4	144	0.7157	0.2425	1.1889	0.74
5	145	0.7341	0.2537	1.2145	1.09
6	146	0.7470	0.2631	1.2308	0.82
7	147	0.7559	0.2704	1.2414	0.85

8	148	0.7622	0.2758	1.2485	0.63
9	149	0.7665	0.2798	1.2533	0.63
10	150	0.7696	0.2827	1.2565	0.60
11	151	0.7717	0.2847	1.2587	0.56
12	152	0.7732	0.2861	1.2602	0.52
13	153	0.7742	0.2872	1.2613	0.53
14	154	0.7750	0.2879	1.2620	0.85
15	155	0.7755	0.2884	1.2626	0.64
16	156	0.7758	0.2887	1.2629	0.94

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 4.9%, that the $\operatorname{AR}(1)$ trend model has satisfied the forecasting for the Q variable.

B2- moving average regression model

The regression of the additive MA (6) trend model is shown in Figure (85).

Figure(85): Moving Average for \log (Q) $M C M /$ month
Table (84) shows the MA(6) prediction for the next 10% of the predicted and real data, which equals to 16 observations. In Table (84) it can be seen the upper and lower values, the forecasted value was the average between the upper and lower values.

Table (84): Forecasted, lower, upper and actual values by MA(6) for $\log (Q)$ variable

$\frac{\text { Row }}{}$	$\frac{\text { Period }}{(\text { month })}$	$\frac{\frac{\text { Forecast }}{(M C M)}}{}$		$\frac{\text { Lower }}{(\mathrm{MCM})}$	$\frac{\text { Upper }}{(\mathrm{MCM})}$

Comparing the actual values with the predicted ones, one can conclude, after calculating the predication error, which equals to 9.0%, that the MA(6) trend model has satisfied the forecasting for the Q variable.

B3- ARIMA modeling

The software (Minitab 13) cannot estimate the value of ARIMA (1,2,6), because each of ARIMA parameter should not exceed 5 .

3.5.6.7 results of prediction

The results of error are summarized in the following Table (85), which provides a summary of the models name used in the prediction and also it provides the percentage error.

Table (85) : Percentage of error of each model for $\log (\mathrm{Q})$ variable

Model	Percentage of Mean Error
Linear Method	9.2%
Quadratic Method	15.3%
Exponential Growth Method	7.9%
Simple Exponential Smoothing	35.6%
Auto Regression, AR(1)	4.9%
Moving Average, MA(6)	9.0%
ARIMA $(1,2,6)$	--

The previous Table (85) shows that the methods, which have satisfied the 10% acceptable prediction limits, are linear, exponential growth, Auto regression $\operatorname{AR}(1)$, and moving average $\mathrm{MA}(5)$. The best model is $\mathrm{AR}(1)$ model with a least error of 4.9%.

3.6 Cross and Distance Correlation

In this section, the relations between Zarka's River variables, which is expressed in term of cross variable and then the relation between each variable in Zarka River and Samra's effluent, the figures of each relation is shown in Appendix (4).

3.6.1 Cross correlation in Zarka River variables:

The cross correlation procedure will be implemented between all the six variables; Flow, TSS, $\mathrm{BOD}_{5}, \mathrm{COD}, \mathrm{T}-\mathrm{P}$, and T-N, in Zarka River.
3.6.1.1 cross correlation between Zarka River flow in MCM/month and TSS in mg/l

The relation between flow and TSS has a cyclic shape. From the figure in Appendix4 (A4.1) it can be seen that the relation between the flow and TSS in Zarka River varies every about six months.
3.6.1.2 cross correlation between Zarka River flow in MCM/month and BOD_{5} in mg / l

The relation between flow and BOD_{5} has a cyclic shape. From the figure in Appendix4 (A4.2) it can be seen that the relation between the flow and BOD_{5} in Zarka River is negative in most of the times. But there are some months where the relation between them is positive.

3.6.1.3 cross correlation between Zarka River flow in MCM/month and COD in mg/l

The relation between flow and COD has a cyclic shape. From the figure in Appendix4 (A4.3) it can be seen that the relation between the flow and COD in Zarka River is negative in most of the times. But there are some months where the relation between them is positive.

3.6.1.4 cross correlation between Zarka River flow in MCM/month and T-P in $\mathbf{m g} / \mathrm{l}$

The relation between flow and T-P has a cyclic shape. From the figure in Appendix4 (A4.4) it can be seen that the relation between the flow and T-P in Zarka River varies every about six months. Also it can be seen that the relation is negative in most of the times.
3.6.1.5 cross correlation between Zarka River flow in MCM/month and T-N in mg/l

The relation between flow and T-N has a cyclic shape. From the figure in Appendix4 (A4.5) it can be seen that the relation between the flow and T-N in Zarka River varies every about six months. Also it can be seen that the relation is negative in most of the times.

3.6.1.6 cross correlation between Zarka River TSS in mg/l and BOD_{5} in mg/l

The relation between TSS and BOD_{5} has a cyclic shape. From the figure in Appendix4 (A4.6) it can be seen that the relation between the TSS and BOD_{5} in Zarka

River varies every about six months. Also it can be seen that the relation is positive in most of the times.

3.6.1.7 cross correlation between Zarka River TSS in mg/l and COD in mg/l

The relation between TSS and COD has a cyclic shape. From the figure in Appendix4 (A4.7) it can be seen that the relation between the TSS and COD in Zarka River varies every about six months. Also it can be seen that the relation is positive in most of the times.

3.6.1.8 cross correlation between Zarka River TSS in mg/l and T-P in mg/l

The relation between TSS and T-P has a cyclic shape. From the figure in Appendix4 (A4.9) it can be seen that the relation between the TSS and T-P in Zarka River varies every about six months. Also it can be seen that the correlation in the positive direction is more than in the negative direction.

3.6.1.9 cross correlation between Zarka River TSS in mg/l and T-N in mg/l

It can be seen from the figure in Appendix4 (A4.9) that when TSS increases the amount of T-N increases. So the relation between the TSS and T-N is increasing in most of the times.
3.6.1.10 cross correlation between Zarka River BOD_{5} in mg / l and COD in mg/l

It can be seen from the figure in Appendix4 (A4.10) that when BOD_{5} increases the amount of COD increases, and that the correlation between them is high. So the relation between the BOD_{5} and COD is an increasing regression.
3.6.1.11 cross correlation between Zarka's River BOD_{5} in mg / l and T-P in mg/l

It can be seen from the figure in Appendix4 (A4.11) that when BOD_{5} increases the amount of T-P increases, and that the correlation between them is high. So the relation between the BOD_{5} and $\mathrm{T}-\mathrm{P}$ is an increasing regression.
> 3.6.1.12 cross correlation between Zarka River BOD_{5} in mg/l and T-N in mg/l

It can be seen from the figure in Appendix4 (A4.12) that when BOD_{5} increases the amount of T-N increases, and that the correlation between them is high. So the relation between the BOD_{5} and $\mathrm{T}-\mathrm{N}$ is an increasing regression.

3.6.1.13 cross correlation between Zarka River COD in mg/l and T-P in mg/l

It can be seen from the figure in Appendix4 (A4.13) that when COD increases the amount of T-P increases, and that the correlation between them is high. So the relation between the COD and T-P is an increasing regression.
3.6.1.14 cross correlation between Zarka River COD in mg/l and T-N in mg/l

It can be seen from the figure in Appendix4 (A4.14) that when COD increases the amount of T-N increases, and that the correlation between them is high. So the relation between the COD and T-N is an increasing regression.

Figure (86): Example on the Cross Correlation Function: BOD5 mg/l; COD mg/l
CCF - correlates BOD5 $\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and COD $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$

-22	0.086	XXX
-21	0.046	XX
-20	0.044	XX
-19	0.060	XXX
-18	0.099	XXX
-17	0.053	XX
-16	0.047	XX
-15	0.041	XX
-14	0.028	XX
-13	0.117	XXXX
-12	0.177	XXXXX
-11	0.233	XXXXXXX
-10	0.226	XXXXXXX
-9	0.194	XXXXXX
-8	0.141	XXXXX
-7	0.153	XXXXX
-6	0.209	XXXXXX
-5	0.172	XXXXX
-4	0.085	XXX
-3	0.171	XXXXX
-2	0.166	XXXXX
-1	0.251	XXXXXXX
0	0.453	XXXXXXXXXXXX
1	0.403	XXXXXXXXXXX
2	0.351	XXXXXXXXXX
3	0.271	XXXXXXXX
4	0.285	XXXXXXXX
5	0.279	XXXXXXXX
6	0.264	XXXXXXXX
7	0.296	XXXXXXXX
8	0.262	XXXXXXXX
9	0.146	XXXXX
10	0.226	XXXXXXX
11	0.203	XXXXXX
12	0.319	XXXXXXXXX
13	0.320	XXXXXXXXX
14	0.210	XXXXXX
15	0.262	XXXXXXXX
16	0.236	XXXXXXX
17	0.162	XXXXX
18	0.265	XXXXXXXX
19	0.203	XXXXXX
20	0.180	XXXXXX
21	0.194	XXXXXX
22	0.178	XXXXX

3.6.1.15 cross correlation between Zarka River T-P in mg/l and T-N in mg/l

It can be seen from the figure in Appendix4 (A4.15) that when T-P increases the amount of T-N increases, and that the correlation between them is so high. So the relation between the T-P and T-N is an increasing regression.

3.6.2 Distance cross correlation between Zarka River and Samra's effluent

The distance cross correlation procedure will be implemented between each variable; Flow, TSS, BOD_{5}, COD, T-P, and T-N, in Zarka River and its arbitrary in Samra's effluent.

3.6.2.1 distance cross correlation function: Zarka Flow MCM/month; Samra flow MCM/month

It can be seen from the figure in Appendix4 (A4.16) that the relation between the Zarka River flow and Samra's effluent is decreasing regression.

3.6.2.2 distance cross correlation function: Zarka TSS mg/l; TSS Samra mg/l

The relation between TSS in Zarka River and TSS in Samra's effluent has a cyclic shape. From the figure in Appendix4 (A4.17) it can be seen that the relation between the TSS in Zarka and Samra varies every about six months. Also it can be seen that the relation is negative in most of the times.

3.6.2.3 distance cross correlation function: Zarka $\mathrm{BOD}_{5} \mathrm{mg} /$; BOD_{5} Samra mg/l

The relation between BOD_{5} in Zarka River and Samra's effluent is positively in most of the times, see Appendix4 (A4.18).

3.6.2.4 distance cross correlation function: Zarka COD mg/l; COD Samra mg/l

The relation between COD in Zarka River and Samra's effluent is positively in most of the times see Appendix4 (A4.19).

3.6.2.5 distance cross correlation function: Zarka T-P mg/l; T-P Samra mg/l

The relation between T-P in Zarka River and Samra's effluent is positively in most of the times, but the correlation is not very high between these two variables see Appendix4 (A4.20).

3.6.2.6 distance cross correlation function: Zarka T-N mg/l; T-N Samra mg/l

The relation between T-N in Zarka River and Samra's effluent is positively in most of the times, but the correlation is not very high between these two variables see Appendix 4 (A4.21).

Figure (87): Example on the Distance Correlation Function: BOD5 in Zarka River mg/l; BOD5 Samra mg/l

CCF - correlates BOD5 mg/l(t) and BOD5 Samra mg/l $1(\mathrm{t}+\mathrm{k}$)		
-22	-0.000	X
-21	0.039	XX
-20	0.101	XXXX
-19	0.096	XXX
-18	0.179	XXXXX
-17	0.152	XXXXX
-16	0.193	XXXXXX
-15	0.173	XXXXX
-14	0.093	XXX
-13	0.028	XX
-12	-0.016	X
-11	-0.043	XX
-10	0.008	X
-9	0.037	XX
-8	0.047	XX
-7	0.215	XXXXXX
-6	0.214	XXXXXX
-5	0.273	XXXXXXXX
-4	0.282	XXXXXXXX
-3	0.211	XXXXXX
-2	0.192	XXXXXX
-1	0.110	XXXX
0	0.188	Xxxxxx
1	0.019	X
2	0.053	XX
3	0.100	XXX
4	0.138	XXXX
5	0.145	XXXXX
6	0.216	XXXXXX
7	0.267	XXXXXXXX
8	0.245	XXXXXXX
9	0.211	XXXXXX
10	0.084	XXX
11	0.095	XXX
12	0.030	XX
13	0.070	XXX
14	0.062	XXX
15	0.067	XXX
16	0.205	XXXXXX
17	0.185	XXXXXX
18	0.249	XXXXXXX
19	0.297	XXXXXXXX
20	0.279	XXXXXXXX
21	0.245	XXXXXXX
22	0.186	XXXXXX

4. DISCUSSION, CONCLUSION, AND RECOMENDATION

4.1 Discussion \& conclusion:

At the beginning of the analysis, the data had some missing values; these missing values in Zarka River were less than the values in Samra's effluent. The only missing data in Zarka River were in December 1999 and it was in the TSS variable, but in Samra's effluent there were nine missing data, and all of them were only in the year 2000 and they were in different types of Samra's effluent variables.

Missing data were estimated by taking the average of the same months. After substituting the missing data, the data of Zarka River were plotted against time in a scatter diagram. The data showed some abnormal observations, which had to be discussed either as real or not. Some observations were real data and kept as is. Other data could not be explained and were considered as outliers.

The abnormality in the real abnormal observed data were explained, this explanation was due to an external condition that influenced the value of the data, such condition is the huge amount of rainfall that the kingdom received in some months during 1992 and other years (see appendix (1)). In these months, the rainfall was mixed with water in Zarka River \& decreased its variables, such as; BOD5, COD, TSS, T-P, and T-N, in the other way it increased the amount of Zarka River flow. The other observed data, which could not have any explanation why this value is abnormal, was treated as an outlier and assumed that the abnormal value was due to human error, such as: human error in reading or calculating the value, equipment error, or any other errors related to human, and it was treated as missing data (average of same months).

Next, normality test was used to plot the normality test of the data; Weibull distribution was used in plotting the histogram of the normality test for each variable. There are other normality histogram plots that could have been used, such as California, Hazen, Beard and other distributions. But Weibull distinguished in its simplicity and it does not have a 100% probability.

The other three normality tests were; the coefficient of variation, which is a preliminary test to determine the horizontal skewness, the Kurtosis test, which is a good test in determining the data normality in the vertical direction, and finally the ShapiroWilk test; which showed good results in the normality analysis.

From the Kurtosis and Shapiro -Wilk tests, it has been evident that the two tests had almost identical results in most data quarters, such as; the first quarter of TSS variable, the fourth quarter of BOD5, and other quarters. This proves that the ShapiroWilk test is a good method for testing the normality in the vertical direction

The five variables (TSS, BOD5, COD, T-P, and T-N) had a normal distribution, but the flow variable showed abnormality due to the variation in data and the large amount of abnormal observations (9 in total). These abnormal observations were kept and used as it is since they were real data. A lognormal test was made to the flow variable; the lognormal test showed a big difference in data normality between the flow and the \log flow. The Weibull distribution model was skewed to right in the flow variable distribution, the coefficient of variation was more than one, and the Kurtosis
coefficient reached a value of 20 . The lognormal test decreased the skewness and made the data of the flow variable better in normality.

After analyzing the data and finding 16-forecasted values for each variable, the percentage of mean error was calculated. For the TSS variable it was shown that the least percentage of mean error was in the exponential growth method, with an error of 1.7%, but this model's method is a deterministic one, the least percentage of mean error in the stochastic model for TSS variable is an $\operatorname{AR}(1)$, which equals to 5.4%, and this was the best method to be used. ARIMA $(1,0,4)$ was also a good model in forecasting the TSS with a mean error of 8.2%.

In forecasting the BOD5 variable, none of the models have satisfied the 10% error. The least percentage of mean error for BOD_{5} variable was in $\operatorname{ARMA}(1,3)$, which equals to 16.1%.

The stochastic model for COD variable did not satisfy the 10% error, thus, none of the stochastic methods was used in forecasting the COD variable, but in the deterministic modeling, the quadratic method gave the least percentage of mean error which equaled to 3.8%, and it is the best model to be used in forecasting the COD.

For the T-P variable, the only method that satisfied the 10% error was the moving average, $\mathrm{MA}(4)$, which gave a percentage of mean error equals to 8.5%, so the moving average $\mathrm{MA}(4)$ is the best method to be used in forecasting the T-P variable. In forecasting the T-N variable, many methods have satisfied the 10% of the mean error, the method that gave the least error was the linear method with an error of 3.3%, but the
best model to be used in forecasting the T-N variable is $\operatorname{ARIMA}(1,2,5)$, which gave 4.8% of mean error.

Finally, for the flow variable, the forecasting was made for $\log (\mathrm{Q})$ variable. Many models have satisfied the 10% mean error. However, the computer software (Minitab13) could not estimate the values of ARIMA $(1,2,6)$, because the coefficients of ARIMA model ($\mathrm{p}, \mathrm{d}, \mathrm{q}$) should be less than 5 in order to be estimated. The best method that gives the least error and to be used in forecasting is $\operatorname{AR}(1)$, which gives mean error of 4.9%.

From the above results it can be concluded that the ARIMA model has satisfied the forecasting model for most of the variables. The least amount of mean error resulting from ARIMA model was when calculating the percentage of mean error for ARIMA(1,2,5), which was 4.8%.

The cross and distance correlation gave a good indication about the relations between variables in Zarka River it self and between the Zarka River with Samra's effluent.

- From the relation between the flow and the TSS in Zarka River, it can be concluded that the relation depends on the season, whether it's summer or winter. At winter, the amount of TSS exerted from rainfall in the run off of Zarka River catchment area was high. But in summer, the amount of TSS was low since the suspended solids had been precipitated.
- From the relation between the flow and BOD5 in Zarka River, it can be concluded that the flow coming from the northern south direction has the ability to dilute the Samra's affluent and decrease the amount of BOD5.
- From the relation between the flow and COD in Zarka River, it can be seen that it has the same relation between the flow and BOD5, but with less correlation, that is because the BOD5 measures only the organic matters. Where as, the COD measures organic and inorganic matters, so the variation in COD with flow would be less.
- The relation between the flow and T-P has the same correlation with the flow and TSS. This indicates that most of the phosphorus in Zarka River is in the form of suspended solids.
- From the relation between the flow and T-N, it can be seen that it has the same correlation between the flow rate with BOD_{5} and COD . This is because the source of T $\mathrm{N}, \mathrm{BOD} 5$, and COD are from the domestic waste. In some cases the relation between the flow and T-N is proportional because some T-N is exerted in the flow of Samra's effluent.
- From the relation between TSS with BOD5 and COD, it can be concluded that most of the organic and inorganic matters are in the form of solids. The correlation between TSS and COD is less than correlation between TSS and BOD5, because the COD variable has more components than the BOD5 variable.
- From the relation between TSS and T-P, it can be concluded that in winter most of the phosphorus is in a solid form. Where as in summer it will be dissolved in Samra's affluent.
- From the relations between the BOD5, COD, T-P, and T-N in Zarka River, it can be seen that all of them have a proportional correlation, so this ensures that the source of these variables is mostly the wastewater.
- From the relation between the flow in Zarka River and the flow from Samra's effluent, it can be concluded that the time of the huge flow in Zarka River, which is mostly between December and March, differs from the huge releases in Samra's effluent, which is mostly between June and July.
- From the relations between the BOD5, COD, T-P, and T-N in Zarka River and Samra's effluent, it can be seen that in each variable the quality of water in Samra's effluent affects positively the quality of water in Zarka River.

4.2 Recommendations:

1. Improving the quality of wastewater in Samra's effluent, which affects mainly Zarka River water quality. This improvement could be achieved by increasing the capacity of Al Samra WWTP with decreasing the concentration of the variables (TSS, BOD5, COD, T-P, and T-N) of the Samra's effluent.
2. Finding alternatives and solutions for the usage of Al Samra's effluent and trying to decrease the amount of the effluent that goes to the Zarka River
3. The necessity of studying the environmental impact assessment (EIA) for future projects in Zarka River catchment area, which could influence the water quality in this River; such as: Industrial factories, agricultural projects, and wastewater treatment plants.
4. Decreasing the amount of TSS in Zarka River exerted from soil erosion by rainfall. Also cleaning the precipitated solids in King Talal Reservoir, taking into consideration that the amount of precipitated solids reach up to 13.0 million cubic meters in the year 2000. (RSS reports, 2001).
5. A study should be made to find the correlation between the cross and distance correlation in the vertical (depth) and horizontal directions, so that the variables
achieved from one site could be used to know the similar variables in any other site along the whole track of the flow.
6. Decreasing the amount of phosphorus and Nitrogen, because there presence in water in a concentration of $300 \mathrm{mg} / \mathrm{m} 3$ for phosphorus and $5 \mathrm{mg} / \mathrm{m} 3$ for nitrogen will create the eutrophication process and encourage the algae to build up. The algae is already exist in Zarka River, decreasing the concentration of T-P and TN using Macrophytes, which lives on algae will help in minimizing the amount of algae.
7. For the time series analysis, as increasing the amount of months, as the time series forecasting will be more accurate. A thirteen years data collected is not enough to show the trend and seasonal affect in a proper way.
8. The values of the variable should be very accurate, since the samples are taken to Amman and then tested there, this can decrease the accuracy of the data. A site laboratory will increase the accuracy of the data.
9. The time of sample should be in the peak hours; usually the samples were taken in the working day (between 8 and 3), which is not necessary to be the peak hours. Taking three or more daily readings for each point will increase the accuracy of the data.
10. More information about any strange reading should be recorded, so that any reading to be considered as an outlier should be justified by comprehensive reasons.
11. Decreasing the amount of missing data will help in decreasing the randomness in data.
12. There should be Jordanian specifications for Irrigation and Agriculture instead of using the FAO specifications or any other specifications in analyzing the water quality.

APPENDICES

Appendix (1): The amount of rainfall in Al Zarka River catchment area

Amount of Rainfall in MCM/Month

Year	Aan.	Feb.	March	April	May	June
	Jannt of Rainfall in MCM/Month					
1988	0.051	0.207	0.135	0.020	0.000	0.000
1989	0.073	0.050	0.093	0.000	0.000	0.000
1990	0.102	0.045	0.084	0.035	0.000	0.000
1991	0.070	0.048	0.058	0.015	0.000	0.000
1992	0.267	0.466	0.054	0.000	0.003	0.008
1993	0.115	0.493	0.045	0.002	0.014	0.000
1994	0.164	0.054	0.076	0.008	0.000	0.007
1995	0.021	0.129	0.033	0.018	0.000	0.000
1996	0.157	0.015	0.218	0.016	0.000	0.000
1997	0.152	0.190	0.178	0.012	0.014	0.000
1998	0.184	0.065	0.258	0.000	0.000	0.000
1999	0.128	0.095	0.049	0.017	0.000	0.000
2000	0.126	0.046	0.054	0.000	0.000	0.000

	Amount of Rainfall in MCM/Month						
Year	July	Aug.	Sep.	Oct.	Nov.	Dec.	
1988	0.020	0.000	0.000	0.003	0.026	0.149	
1989	0.000	0.000	0.000	0.003	0.031	0.059	
1990	0.000	0.000	0.000	0.005	0.016	0.001	
1991	0.000	0.000	0.000	0.000	0.032	0.162	
1992	0.000	0.000	0.000	0.000	0.088	0.225	
1993	0.000	0.000	0.000	0.004	0.012	0.011	
1994	0.000	0.000	0.000	0.005	0.200	0.142	
1995	0.000	0.000	0.000	0.000	0.032	0.034	
1996	0.000	0.000	0.000	0.013	0.023	0.071	
1997	0.000	0.000	0.000	0.030	0.068	0.154	
1998	0.000	0.000	0.000	0.000	0.000	0.009	
1999	0.000	0.000	0.000	0.000	0.002	0.007	
2000	0.000	0.000	0.000	0.027	0.006	0.063	

Appendix (2):Coefficients ($\mathbf{a}_{\mathrm{N}-\mathrm{It}}$) for Shapiro-Wilk W-test of normality

\mathbf{i} / \mathbf{n}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
1	0.7071	0.7071	0.6872	0.6646	0.6431	0.6233	0.6052	0.5888	0.5739
2	-	0.0000	0.1677	0.2413	0.2806	0.0310	0.3164	0.3244	0.3291
3	-	-	-	0.0000	0.0875	0.1401	0.1743	0.1976	0.2141
4	-	-	-	-	-	0.0000	0.0561	0.0947	0.1224
5	-	-	-	-	-	-	-	0.0000	0.0399

\mathbf{i} / \mathbf{n}	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
1	0.5601	0.5475	0.5359	0.5251	0.5150	0.5056	0.4968	0.4886	0.4808	0.4734
2	0.3315	0.3325	0.3325	0.3318	0.3306	0.3290	0.3273	0.3253	0.3232	0.3211
3	0.2260	0.2347	0.2412	0.2460	0.2495	0.2521	0.2540	0.2553	0.2561	0.2565
4	0.1429	0.1586	0.1707	0.1802	0.1878	0.1939	0.1988	0.2027	0.2059	0.2085
5	0.0695	0.0922	0.1099	0.1240	0.1353	0.1447	0.1524	0.1587	0.1641	0.1686
6	0.0000	0.0303	0.0539	0.0727	0.0880	0.1005	0.1109	0.1197	0.1271	0.1334
7	-	-	0.0000	0.0240	0.0433	0.0593	0.0725	0.0837	0.0932	0.1013
8	-	-	-	-	0.0000	0.0196	0.0359	0.0496	0.0621	0.0711
9	-	-	-	-	-	-	0.0000	0.0163	0.0303	0.0422
10	-	-	-	-	-	-	-	-	0.0000	0.0140

Cont. Appendix (2):Coefficients ($\mathbf{a}_{\mathrm{N}-\mathrm{I}+1}$) for Shapiro-Wilk W-test of normality

\mathbf{i} / \mathbf{n}	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
1	0.4643	0.4590	0.4542	0.4493	0.4450	0.4407	0.4366	0.4328	0.4291	0.4254
2	0.3185	0.3156	0.3126	0.3098	0.3069	0.3043	0.3018	0.2992	0.2968	0.2944
3	0.2578	0.2571	0.2563	0.2554	0.2543	0.2533	0.2522	0.2510	0.2499	0.2487
4	0.2119	0.2131	0.2139	0.2145	0.2148	0.2151	0.2152	0.2151	0.2150	0.2148
5	0.1736	0.1764	0.1787	0.1807	0.1822	0.1836	0.1848	0.1857	0.1864	0.1870
6	0.1399	0.1443	0.1480	0.1512	0.1539	0.1563	0.1584	0.1601	0.1616	0.1630
7	0.1092	0.1150	0.1201	0.1245	0.1283	0.1316	0.1346	0.1372	0.1395	0.1415
8	0.0804	0.0878	0.0941	0.0997	0.1046	0.1089	0.1128	0.1162	0.1192	0.1219
9	0.0530	0.0618	0.0696	0.0764	0.0823	0.0876	0.0923	0.0965	0.1002	0.1036
10	0.0263	0.0368	0.0459	0.0539	0.0610	0.0672	0.0728	0.0778	0.0822	0.0862
11	0.0000	0.0122	0.0228	0.0321	0.0403	0.0476	0.0540	0.0598	0.0650	0.0697
12	-	-	0.0000	0.0107	0.0200	0.0284	0.0358	0.0424	0.0483	0.0537
13	-	-	-	-	0.0000	0.0094	0.0178	0.0253	0.0320	0.0381
14	-	-	-	-	-	-	0.0000	0.0084	0.0159	0.0227
15	-	-	-	-	-	-	-	-	0.0000	0.0076

Cont. Appendix (2):Coefficients ($\mathbf{a}_{\mathrm{N}-\mathrm{I}+1}$) for Shapiro-Wilk \boldsymbol{W}-test of normality

\mathbf{i} / \mathbf{n}	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
1	0.4220	0.4188	0.4156	0.4127	0.4096	0.4068	0.4040	0.4015	0.3989	0.3964
2	0.2921	0.2898	0.2876	0.2854	0.2834	0.2813	0.2794	0.2774	0.2755	0.2737
3	0.2475	0.2463	0.2451	0.2439	0.2427	0.2415	0.2403	0.2391	0.2380	0.2368
4	0.2145	0.2141	0.2137	0.2132	0.2127	0.2121	0.2116	0.2110	0.2104	0.2098
5	0.1874	0.1878	0.1880	0.1882	0.1883	0.1883	0.1883	0.1881	0.1880	0.1878
6	0.1641	0.1651	0.1660	0.1667	0.1673	0.1678	0.1683	0.1686	0.1689	0.1691
7	0.1433	0.1449	0.1463	0.1475	0.1487	0.1496	0.1503	0.1513	0.1520	0.1526
8	0.1243	0.1265	0.1284	0.1301	0.1317	0.1331	0.1344	0.1356	0.1366	0.1376
9	0.1066	0.1093	0.1118	0.1140	0.1160	0.1179	0.1196	0.1211	0.1250	0.1237
10	0.0899	0.0931	0.0961	0.0988	0.1013	0.1036	0.1056	0.1075	0.1092	0.1108
11	0.0739	0.0777	0.0812	0.0844	0.0873	0.0900	0.0924	0.0947	0.0967	0.0896
12	0.0585	0.0629	0.0669	0.0706	0.0739	0.0770	0.0798	0.0824	0.0848	0.0870
13	0.0435	0.0485	0.0530	0.0572	0.0610	0.0645	0.0677	0.0706	0.0733	0.0759
14	0.0289	0.0344	0.0395	0.0441	0.0484	0.0523	0.0559	0.0592	0.0622	0.0651
15	0.0144	0.0206	0.0262	0.0314	0.0361	0.0404	0.0444	0.0481	0.0515	0.0546
16	0.0000	0.0068	0.0131	0.0187	0.0239	0.0287	0.0331	0.0372	0.0409	0.0444
17	-	-	0.0000	0.0062	0.0119	0.0172	0.0220	0.0264	0.0305	0.0343
18	-	-	-	-	0.0000	0.0057	0.0110	0.0158	0.0203	0.0244
19	-	-	-	-	-	-	0.0000	0.0053	0.0101	0.0146
20	-	-	-	-	-	-	-	-	0.0000	0.0049
10										

Cont. Appendix (2):Coefficients ($\mathbf{a}_{\mathrm{N}-\mathrm{I}+1}$) for Shapiro-Wilk W-test of normality

\mathbf{i} / \mathbf{n}	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$
1	0.3940	0.3917	0.3894	0.3872	0.3850	0.3830	0.3808	0.3789	0.3000	0.3751
2	0.2719	0.2701	0.2684	0.2667	0.2651	0.2635	0.2620	0.2604	0.2589	0.2574
3	0.2357	0.2345	0.2334	0.2323	0.2313	0.2302	0.2291	0.2281	0.2271	0.2260
4	0.2091	0.2085	0.2078	0.2072	0.2065	0.2058	0.2052	0.2045	0.2038	0.2032
5	0.1876	0.1874	0.1871	0.1868	0.1865	0.1862	0.1859	0.1855	0.1851	0.1847
6	0.1693	0.1694	0.1695	0.1695	0.1695	0.1695	0.1695	0.1693	0.1692	0.1691
7	0.1531	0.1535	0.1539	0.1542	0.1545	0.1548	0.1550	0.1551	0.1553	0.1554
8	0.1384	0.1392	0.1398	0.1405	0.1410	0.1415	0.1420	0.1423	0.1427	0.1430
9	0.1249	0.1259	0.1269	0.1278	0.1286	0.1293	0.1300	0.1306	0.1312	0.1317
10	0.1123	0.1136	0.1149	0.1160	0.1170	0.1180	0.1189	0.1197	0.1205	0.1212
11	0.1004	0.1020	0.1035	0.1049	0.1062	0.1073	0.1085	0.1095	0.1105	0.1113
12	0.0891	0.0909	0.0927	0.0943	0.0959	0.0972	0.0986	0.0998	0.1010	0.1020
13	0.0782	0.0804	0.0824	0.0842	0.0860	0.0876	0.0892	0.0906	0.0919	0.0932
14	0.0677	0.0701	0.0724	0.0745	0.0775	0.0785	0.0801	0.0817	0.0832	0.0846
15	0.0575	0.0602	0.0628	0.0651	0.0673	0.0694	0.0713	0.0731	0.0748	0.0764
16	0.0476	0.0506	0.0534	0.0560	0.0584	0.0607	0.0628	0.0648	0.0662	0.0685
17	0.0379	0.0411	0.0442	0.0471	0.0497	0.0522	0.0546	0.0568	0.0588	0.0608
18	0.0283	0.0318	0.0352	0.0383	0.0412	0.0439	0.0465	0.0489	0.0511	0.0532
19	0.0188	0.0227	0.0263	0.0296	0.0328	0.0357	0.0385	0.0411	0.0436	0.0459
20	0.0094	0.0316	0.0175	0.0211	0.0245	0.0277	0.0307	0.0335	0.0361	0.0386
21	0.0000	0.0045	0.0087	0.0126	0.0163	0.0197	0.0229	0.0259	0.0288	0.0314
22	-	-	0.0000	0.0042	0.0081	0.0118	0.0153	0.0185	0.0215	0.0244
23	-	-	-	-	0.0000	0.0039	0.0076	0.0111	0.0143	0.0174
24	-	-	-	-	-	-	0.0000	0.0037	0.0071	0.0104
25	-	-	-	-	-	-	-	0.0000	0.0035	
10										

Appendix (3): Percentage points of the Shapiro-Wilk W-test

n	1 - Confidence Interval		n	1 - Confidence Interval	
	0.01	0.05		0.01	0.05
3	0.753	0.767	27	0.894	0.923
4	0.687	0.748	28	0.896	0.924
5	0.686	0.762	29	0.898	0.926
6	0.713	0.788	30	0.900	0.927
7	0.730	0.803	31	0.902	0.929
8	0.749	0.818	32	0.904	0.930
9	0.764	0.829	33	0.906	0.931
10	0.781	0.842	34	0.908	0.933
11	0.792	0.850	35	0.910	0.934
12	0.805	0.859	36	0.912	0.935
13	0.814	0.866	37	0.914	0.936
14	0.825	0.874	38	0.914	0.938
15	0.835	0.881	39	0.917	0.939
16	0.844	0.887	40	0.919	0.940
17	0.851	0.892	41	0.920	0.941
18	0.858	0.897	42	0.922	0.942
19	0.863	0.901	43	0.923	0.943
20	0.868	0.905	44	0.924	0.944
21	0.873	0.908	45	0.926	0.945
22	0.878	0.911	46	0.927	0.945
23	0.881	0.914	47	0.928	0.946
24	0.884	0.916	48	0.929	0.947
25	0.888	0.918	49	0.929	0.947
26	0.891	0.920	50	0.930	0.947

Appendix (4):

A4.1: Cross Correlation Function: Zarka Flow MCM/month; TSS Zarka mg/l

Cont. Appendix (4):

A4.2: Cross Correlation Function: Zarka Flow MCM/month; BOD5 Zarka mg/l

CCF - correlates Zarka Flow MCM/month(t) and BOD5 Zarka mg/l(t+k)

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 $0.4 \begin{array}{lllllll}0.6 & 0.8 & 1.0\end{array}$		
	+---	+----+---+--
-22	-0.151	XXXXX
-21	-0.088	XXX
-20	0.005	X
-19	0.031	XX
-18	-0.015	X
-17	-0.025	XX
-16	0.036	XX
-15	0.005	X
-14	-0.000	X
-13	-0.041	XX
-12	-0.086	XXX
-11	-0.117	XXXX
-10	-0.110	XXXX
-9	-0.083	XXX
-8	-0.024	XX
-7	-0.018	X
-6	-0.047	XX
-5	-0.015	X
-4	0.013	X
-3	-0.025	XX
-2	-0.095	XXX
-1	-0.126	XXXX
0	-0.250	XXXXXXX
1	-0.224	XXXXXXX
2	-0.098	XXX
3	-0.053	XX
4	-0.020	XX
5	0.062	XXX
6	0.003	X
7	-0.029	XX
8	-0.096	XXX
9	-0.156	XXXXX
10	-0.145	XXXXX
11	-0.193	XXXXXX
12	-0.171	XXXXX
13	-0.093	XXX
14	-0.009	X
15	0.077	XXX
16	0.096	XXX
17	0.167	XXXXX
18	0.160	XXXXX
19	0.119	XXXX
20	0.073	XXX
21	0.096	XXX
22	0.060	XXX

Cont. Appendix (4):

A4.3: Cross Correlation Function: Zarka Flow MCM/month; COD Zarka mg/l

CCF - correlates Zarka Flow MCM/month(t) and COD Zarka mg/l(t+k)

Cont. Appendix (4):

A4.4: Cross Correlation Function: Zarka Flow MCM/month; T-P Zarka mg/l

CCF - correlates Zarka Flow MCM/month(t) and T-P Zarka mg/l $(\mathrm{t}+\mathrm{k})$

$\begin{array}{r} -1.0-1 \\ +-- \end{array}$	
-22 -0.127	XXXX
-21-0.079	XXX
-20 0.015	X
-19 0.052	XX
-18 0.101	XXXX
-17 0.110	XXXX
-16 0.099	XXX
-15 0.121	XXXX
-14 0.090	XXX
-13 0.024	XX
-12-0.103	XXXX
-11-0.208	XXXXXX
-10-0.185	XXXXXX
-9 -0.159	XXXXX
-8-0.116	XXXX
-7-0.028	XX
-6 0.009	X
-5 0.075	XXX
-4 0.063	XXX
-3 0.054	XX
-2 -0.079	XXX
-1-0.250	XXXXXXX
0 -0.409	XXXXXXXXXXX
$1-0.462$	XXXXXXXXXXXXX
$2-0.368$	XXXXXXXXXX
$3-0.309$	XXXXXXXXX
$4-0.195$	XXXXXX
$5-0.126$	XXXX
$6-0.048$	XX
$7-0.008$	X
$8-0.000$	X
9-0.047	XX
$10-0.141$	XXXXX
$11-0.159$	XXXXX
$12-0.222$	XXXXXXX
$13-0.233$	XXXXXXX
$14-0.221$	XXXXXXX
$15-0.116$	XXXX
$16-0.032$	XX
170.068	XXX
180.128	XXXX
190.149	XXXXX
200.115	XXXX
210.110	XXXX
220.032	XX

Cont. Appendix (4):

A4.5: Cross Correlation Function: Zarka Flow MCM/month; T-N Zarka mg/l

CCF - correlates Zarka Flow MCM/month(t) and T-N Zarka mg/l(t+k)

-22 -0.130	XXXX
-21-0.142	XXXXX
-20-0.124	XXXX
-19-0.148	XXXXX
-18-0.148	XXXXX
-17-0.156	XXXXX
-16-0.069	XXX
-15-0.022	XX
-14 0.013	X
-13-0.008	X
-12-0.058	XX
-11-0.101	XXXX
-10-0.147	XXXXX
-9 -0.155	XXXXX
-8 -0.179	XXXXX
-7 -0.184	XXXXXX
-6-0.154	XXXXX
-5 -0.130	XXXX
-4 -0.094	XXX
-3 -0.036	XX
-2 -0.035	XX
-1 -0.114	XXXX
$0-0.214$	XXXXXX
$1-0.259$	XXXXXXX
$2-0.211$	XXXXXX
$3-0.230$	XXXXXXX
4-0.206	XXXXXX
$5-0.232$	XXXXXXX
$6-0.246$	XXXXXXX
$7-0.164$	XXXXX
8-0.116	XXXX
$9-0.108$	XXXX
$10-0.126$	XXXX
$11-0.151$	XXXXX
$12-0.151$	XXXXX
$13-0.153$	XXXXX
$14-0.137$	XXXX
$15-0.122$	XXXX
$16-0.103$	XXXX
$17-0.060$	XX
$18-0.034$	XX
$19-0.017$	X
$20 \quad 0.024$	XX
210.069	XXX
220.069	XXX

Cont. Appendix (4):

A4.6: Cross Correlation Function: TSS mg/l ; BOD5 mg/l for Zarka River

CCF - correlates TSS	$\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and BOD5 $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$
-22 0.153	XXXXX
-21 0.008	X
-20-0.028	XX
-19-0.021	XX
-18 0.016	X
-17 0.037	XX
-16 0.210	XXXXXX
-15 0.105	XXXX
-14 0.175	XXXXX
-13 0.138	XXXX
$\begin{array}{lll}-12 & 0.181\end{array}$	XXXXXX
-11 0.088	XXX
-10-0.047	XX
-9 -0.026	XX
-8 0.036	XX
-7 0.049	XX
-6 0.035	XX
-5 0.088	XXX
-4 0.121	XXXX
-3 0.159	XXXXX
-2 0.251	XXXXXXX
-1 0.291	XXXXXXXX
$0 \quad 0.394$	XXXXXXXXXXX
10.130	XXXX
$2-0.001$	X
30.082	XXX
40.008	X
$5-0.031$	XX
60.039	XX
70.119	XXXX
80.125	XXXX
90.096	XXX
100.246	XXXXXXX
110.184	XXXXXX
120.155	XXXXX
130.118	XXXX
140.049	XX
$15-0.082$	XXX
$16-0.043$	XX
$17 \quad 0.024$	XX
180.055	XX
190.073	XXX
$20 \quad 0.042$	XX
210.196	XXXXXX
220.214	XXXXXX

Cont. Appendix (4):

A4.7: Cross Correlation Function: TSS mg/l; COD mg/l in Zarka River

CCF - correlates TSS	$\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and COD $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$
$\begin{array}{r} -1.0-0.8 \text {-0.6-0. } \\ +---+-------+~ \end{array}$	
-22 0.122	XXXX
$\begin{array}{lll}-21 & 0.011\end{array}$	X
-20-0.018	X
-19-0.026	XX
-18 0.008	X
-17-0.049	XX
-16 0.044	XX
-15 0.051	XX
-14 0.134	XXXX
$\begin{array}{lll}-13 & 0.121\end{array}$	XXXX
-12 0.147	XXXXX
-11 0.135	XXXX
-10 0.071	XXX
-9 0.006	X
-8 -0.018	X
-7 -0.030	XX
-6 -0.039	XX
-5 -0.045	XX
-4 -0.009	X
-3 0.064	XXX
-2 0.114	XXXX
-1 0.254	XXXXXXX
00.338	XXXXXXXXX
10.272	XXXXXXXX
20.093	XXX
30.021	XX
40.070	XXX
$5-0.057$	XX
6 -0.140	XXXXX
7 -0.024	XX
80.009	X
$9-0.058$	XX
100.109	XXXX
110.228	XXXXXXX
120.205	XXXXXX
130.204	XXXXXX
140.064	XXX
150.029	XX
$16-0.082$	XXX
$17-0.053$	XX
$18-0.040$	XX
$19-0.023$	XX
$20-0.174$	XXXXX
$21-0.037$	XX
220.024	XX

Cont. Appendix (4):

A4.8: Cross Correlation Function: TSS mg/l; T-P mg/l in Zarka River

CCF - correlates TSS	$\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and T-P $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$
-22 0.153	XXXXX
-21 0.037	XX
-20 0.085	XXX
-19-0.038	XX
-18-0.058	XX
-17-0.073	XXX
-16-0.002	X
-15 0.099	XXX
-14 0.171	XXXXX
-13 0.279	XXXXXXXX
-12 0.203	XXXXXX
$\begin{array}{lll}-11 & 0.235\end{array}$	XXXXXXX
-10 0.226	XXXXXXX
-9 0.141	XXXXX
-8 -0.068	XXX
-7-0.071	XXX
-6 -0.081	XXX
-5 -0.085	XXX
-4 -0.135	XXXX
-3 0.0 .054	XX
-2 0.160	XXXXX
-1 0.291	XXXXXXXX
$0 \quad 0.352$	XXXXXXXXXX
10.272	XXXXXXXX
20.154	XXXXX
30.078	XXX
40.007	X
$5-0.102$	XXXX
6 -0.155	XXXXX
$7-0.110$	XXXX
$8-0.036$	XX
90.056	XX
100.200	XXXXXX
110.216	XXXXXX
120.247	XXXXXXX
130.233	XXXXXXX
140.169	XXXXX
150.080	XXX
$16-0.054$	XX
17 -0.088	XXX
$18-0.151$	XXXXX
$19-0.098$	XXX
$20-0.074$	XXX
$21-0.048$	XX
220.071	XXX

Cont. Appendix (4):

A4.9: Cross Correlation Function: TSS mg/l; T-N mg/l in Zarka River

CCF	F - correlates TSS	$\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and T-N $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$
	$\begin{array}{r} -1.0-0.8 \text {-0.6-0.4 } \\ +---+----+-+. \end{array}$	
-22	0.141	XXXXX
-21	0.072	XXX
-20	0.095	XXX
-19	0.090	XXX
-18	0.076	XXX
-17	0.021	XX
-16	0.032	XX
-15	0.012	X
-14	0.060	XXX
-13	0.098	XXX
-12	0.150	XXXXX
-11	0.158	XXXXX
-10	0.219	XXXXXX
-9	0.152	XXXXX
-8	0.210	XXXXXX
-7	0.147	XXXXX
-6	0.166	XXXXX
-5	0.117	XXXX
-4	0.056	XX
-3	0.076	XXX
-2	0.096	XXX
-1	0.159	XXXXX
0	0.252	XXXXXXX
1	0.151	XXXXX
2	0.183	XXXXXX
3	0.164	XXXXX
4	0.213	XXXXXX
5	0.140	XXXX
6	0.065	XXX
7	0.047	XX
8	0.023	XX
9	0.054	XX
10	0.101	XXXX
11	0.103	XXXX
12	0.169	XXXXX
13	0.155	XXXXX
14	0.119	XXXX
15	0.099	XXX
16	0.125	XXXX
17	0.109	XXXX
18	0.082	XXX
19	-0.001	X
20	-0.007	X
21	-0.000	X
22	0.083	XXX

Cont. Appendix (4):

A4.10: Cross Correlation Function: BOD5 mg/l; COD mg/l in Zarka River

CCF - correlates BOD5		$\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and COD $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$
		$\begin{array}{lllll} 0.2 & 0.0 & 0.2 & 0.4 & 0.6 \\ --+--------------------------------~ \end{array}$
-22	0.086	XXX
-21	0.046	XX
-20	0.044	XX
-19	0.060	XXX
-18	0.099	XXX
-17	0.053	XX
-16	0.047	XX
-15	0.041	XX
-14	0.028	XX
-13	0.117	XXXX
-12	0.177	XXXXX
-11	0.233	XXXXXXX
-10	0.226	XXXXXXX
-9	0.194	XXXXXX
-8	0.141	XXXXX
-7	0.153	XXXXX
-6	0.209	XXXXXX
-5	0.172	XXXXX
-4	0.085	XXX
-3	0.171	XXXXX
-2	0.166	XXXXX
-1	0.251	XXXXXXX
0	0.453	XXXXXXXXXXXX
1	0.403	XXXXXXXXXXX
2	0.351	XXXXXXXXXX
3	0.271	XXXXXXXX
4	0.285	XXXXXXXX
5	0.279	XXXXXXXX
6	0.264	XXXXXXXX
7	0.296	XXXXXXXX
8	0.262	XXXXXXXX
9	0.146	XXXXX
10	0.226	XXXXXXX
11	0.203	XXXXXX
12	0.319	XXXXXXXXX
13	0.320	XXXXXXXXX
14	0.210	XXXXXX
15	0.262	XXXXXXXX
16	0.236	XXXXXXX
17	0.162	XXXXX
18	0.265	XXXXXXXX
19	0.203	XXXXXX
20	0.180	XXXXXX
21	0.194	XXXXXX
22	0.178	XXXXX

Cont. Appendix (4):
A4.11: Cross Correlation Function: BOD5 mg/l; T-P mg/l in Zarka River

CCF - correlates BOD5		$\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and T-P $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$
-22	0.159	XXXXX
-21	0.157	XXXXX
-20	0.191	XXXXXX
-19	0.141	XXXXX
-18	0.123	XXXX
-17	0.063	XXX
-16	0.119	XXXX
-15	0.075	XXX
-14	0.083	XXX
-13	0.276	XXXXXXXX
-12	0.312	XXXXXXXXX
-11	0.334	XXXXXXXXX
-10	0.352	XXXXXXXXXX
-9	0.349	XXXXXXXXXX
-8	0.335	XXXXXXXXX
-7	0.285	XXXXXXXX
-6	0.282	XXXXXXXX
-5	0.216	XXXXXX
-4	0.150	XXXXX
-3	0.273	XXXXXXXX
-2	0.289	XXXXXXXX
-1	0.368	XXXXXXXXXX
0	0.451	XXXXXXXXXXXX
1	0.437	XXXXXXXXXXXX
2	0.453	XXXXXXXXXXXX
3	0.379	XXXXXXXXXX
4	0.290	XXXXXXXX
5	0.288	XXXXXXXX
6	0.304	XXXXXXXXX
7	0.263	XXXXXXXX
8	0.152	XXXXX
9	0.215	XXXXXX
10	0.275	XXXXXXXX
11	0.317	XXXXXXXXX
12	0.276	XXXXXXXX
13	0.339	XXXXXXXXX
14	0.263	XXXXXXXX
15	0.278	XXXXXXXX
16	0.293	XXXXXXXX
17	0.203	XXXXXX
18	0.202	XXXXXX
19	0.191	XXXXXX
20	0.180	XXXXXX
21	0.118	XXXX
22	0.183	XXXXXX

Cont. Appendix (4):

A4.12: Cross Correlation Function: BOD5 mg/l; T-N mg/l in Zarka River

CCF - correlates BOD5 $\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and T-N $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$

Cont. Appendix (4):

A4.13: Cross Correlation Function: COD mg/l; T-P mg/l in Zarka River

CCF - correlates COD		$\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and T-P $\mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$
	$\begin{gathered} -1.0-0.8-0.6-0.4 \\ +---+----+--+-1 \end{gathered}$	$\begin{array}{ccccc} -0.2 & 0.0 & 0.2 & 0.4 & 0.6 \end{array} 0.8 \quad 1.0$
-22	0.146	XXXXX
-21	0.185	XXXXXX
-20	0.193	XXXXXX
-19	0.159	XXXXX
-18	0.150	XXXXX
-17	0.178	XXXXX
-16	0.156	XXXXX
-15	0.278	XXXXXXXX
-14	0.302	XXXXXXXXX
-13	0.389	XXXXXXXXXXX
-12	0.339	XXXXXXXXX
-11	0.379	XXXXXXXXXX
-10	0.333	XXXXXXXXX
-9	0.283	XXXXXXXX
-8	0.203	XXXXXX
-7	0.218	XXXXXX
-6	0.206	XXXXXX
-5	0.264	XXXXXXXX
-4	0.280	XXXXXXXX
-3	0.351	XXXXXXXXXX
-2	0.505	XXXXXXXXXXXXXX
-1	0.557	XXXXXXXXXXXXXXX
0	0.644	XXXXXXXXXXXXXXXXX
1	0.474	XXXXXXXXXXXXX
2	0.419	XXXXXXXXXXX
3	0.392	XXXXXXXXXXX
4	0.375	XXXXXXXXXX
5	0.243	XXXXXXX
6	0.198	XXXXXX
7	0.195	XXXXXX
8	0.222	XXXXXXX
9	0.228	XXXXXXX
10	0.287	XXXXXXXX
11	0.327	XXXXXXXXX
12	0.370	XXXXXXXXXX
13	0.313	XXXXXXXXX
14	0.211	XXXXXX
15	0.225	XXXXXXX
16	0.155	XXXXX
17	0.094	XXX
18	0.125	XXXX
19	0.119	XXXX
20	-0.017	X
21	0.009	X
22	0.075	XXX

Cont. Appendix (4):

A4.14: Cross Correlation Function: COD mg/l; T-N mg/l in Zarka River

CCF - correlates COD $\mathrm{mg} / \mathrm{l}(\mathrm{t})$ and $\mathrm{T}-\mathrm{N} \quad \mathrm{mg} / \mathrm{l}(\mathrm{t}+\mathrm{k})$

-22	0.299	XXXXXXXX
-21	0.319	XXXXXXXXX
-20	0.324	XXXXXXXXX
-19	0.371	XXXXXXXXXX
-18	0.392	XXXXXXXXXXX
-17	0.329	XXXXXXXXX
-16	0.351	XXXXXXXXXX
-15	0.315	XXXXXXXXX
-14	0.336	XXXXXXXXX
-13	0.408	XXXXXXXXXXX
-12	0.403	XXXXXXXXXXX
-11	0.380	XXXXXXXXXXX
-10	0.374	XXXXXXXXXX
-9	0.410	XXXXXXXXXXX
-8	0.455	XXXXXXXXXXXX
-7	0.480	XXXXXXXXXXXXX
-6	0.460	XXXXXXXXXXXXX
-5	0.469	XXXXXXXXXXXXX
-4	0.472	XXXXXXXXXXXXX
-3	0.463	XXXXXXXXXXXXX
-2	0.482	XXXXXXXXXXXXX
-1	0.567	XXXXXXXXXXXXXXX
0	0.561	XXXXXXXXXXXXXXX
1	0.489	XXXXXXXXXXXXX
2	0.461	XXXXXXXXXXXXX
3	0.473	XXXXXXXXXXXXX
4	0.447	XXXXXXXXXXXX
5	0.458	XXXXXXXXXXXX
6	0.422	XXXXXXXXXXXX
7	0.352	XXXXXXXXXX
8	0.351	XXXXXXXXXX
9	0.332	XXXXXXXXX
10	0.369	XXXXXXXXXX
11	0.420	XXXXXXXXXXXX
12	0.408	XXXXXXXXXXX
13	0.294	XXXXXXXX
14	0.282	XXXXXXXX
15	0.288	XXXXXXXX
16	0.307	XXXXXXXXX
17	0.269	XXXXXXXX
18	0.245	XXXXXXX
19	0.129	XXXX
20	0.106	XXXX
21	0.082	XXX
22	0.128	XXXX

Cont. Appendix (4):

A4.15: Cross Correlation Function: T-P mg/l; T-N mg/l in Zarka River

CCF - correlates T-P mg/l(t) and T-N mg/l(t+k)		
	$\begin{array}{r} -1.0-0.8-0.6-0 . \\ +------+---1 . \end{array}$	$\begin{array}{lllll} & -0.2 & 0.0 & 0.2 & 0.4 \\ 0 \end{array}$
-22	0.276	XXXXXXXX
-21	0.251	XXXXXXX
-20	0.319	XXXXXXXXX
-19	0.300	XXXXXXXXX
-18	0.274	XXXXXXXX
-17	0.256	XXXXXXX
-16	0.273	XXXXXXXX
-15	0.252	XXXXXXX
-14	0.302	XXXXXXXXX
-13	0.382	XXXXXXXXXXX
-12	0.391	XXXXXXXXXXX
-11	0.458	XXXXXXXXXXXX
-10	0.443	XXXXXXXXXXXX
-9	0.467	XXXXXXXXXXXXX
-8	0.468	XXXXXXXXXXXXX
-7	0.514	XXXXXXXXXXXXXX
-6	0.459	XXXXXXXXXXXX
-5	0.468	XXXXXXXXXXXXX
-4	0.438	XXXXXXXXXXXX
-3	0.486	XXXXXXXXXXXXX
-2	0.536	XXXXXXXXXXXXXX
-1	0.620	XXXXXXXXXXXXXXXXX
0	0.688	XXXXXXXXXXXXXXXXXX
1	0.628	XXXXXXXXXXXXXXXXX
2	0.604	XXXXXXXXXXXXXXXX
3	0.559	XXXXXXXXXXXXXXX
4	0.530	XXXXXXXXXXXXXX
5	0.518	XXXXXXXXXXXXXX
6	0.456	XXXXXXXXXXXX
7	0.432	XXXXXXXXXXXX
8	0.382	XXXXXXXXXXX
9	0.382	XXXXXXXXXXX
10	0.427	XXXXXXXXXXXX
11	0.435	XXXXXXXXXXXX
12	0.457	XXXXXXXXXXXX
13	0.429	XXXXXXXXXXXX
14	0.383	XXXXXXXXXXX
15	0.365	XXXXXXXXXX
16	0.340	XXXXXXXXXX
17	0.327	XXXXXXXXX
18	0.284	XXXXXXXX
19	0.241	XXXXXXX
20	0.212	XXXXXX
21	0.178	XXXXX
22	0.231	XXXXXXX

Cont. Appendix (4):

A4.16: Distance Correlation Function: Zarka Flow MCM/month; Samra Flow MCM/month

CCF - correlates Zarka Flow MCM/month(t) and Samra Flow MCM/month $(\mathrm{t}+\mathrm{k})$

-22 -0.101	XXXX
-21-0.128	XXXX
-20-0.118	XXXX
-19-0.113	XXXX
-18-0.124	XXXX
-17-0.120	XXXX
-16-0.125	XXXX
-15-0.113	XXXX
-14-0.109	XXXX
-13-0.086	XXX
-12-0.086	XXX
-11-0.099	XXX
-10-0.112	XXXX
-9 -0.118	XXXX
-8-0.119	XXXX
-7 -0.130	XXXX
-6-0.116	XXXX
-5 -0.108	XXXX
-4-0.098	XXX
-3-0.075	XXX
-2 -0.042	XX
-1 -0.051	XX
$0-0.013$	X
$1-0.024$	XX
$2-0.041$	XX
$3-0.055$	XX
$4-0.040$	XX
$5-0.031$	XX
$6-0.035$	XX
7 -0.040	XX
$8-0.035$	XX
$9-0.042$	XX
$10-0.015$	X
$11-0.017$	X
$12-0.042$	XX
$13-0.036$	XX
$14-0.031$	XX
$15-0.034$	XX
$16-0.033$	XX
$17-0.041$	XX
$18-0.038$	XX
$19-0.045$	XX
$20-0.039$	XX
$21-0.032$	XX
$22-0.003$	X

Cont. Appendix (4):

A4.17: Distance Correlation Function: TSS Zarka River mg/l; TSS Samra mg/l

Cont. Appendix (4):

A4.18: Distance Correlation Function: BOD5 in Zarka mg/l; BOD5 Samra mg/l

Cont. Appendix (4):

A4.19: Distance Correlation Function: COD in Zarka River mg/l; COD Samra mg/l

Cont. Appendix (4):

A4.20: Distance Correlation Function: T-P in Zarka River mg/l; T-P Samra mg/l

Cont. Appendix (4):
A4.21: Distance Correlation Function: T-N in Zarka River mg/l; T-N Samra mg/l

REFERENCES

Anderson T. W., 1971. The Statistical Analysis of Time Series. Wiley. USA

Berthouex, P.M. and Box, G.E. 1996. Time Series Models For Forecasting Wastewater Treatment Plant Performance. Jour. Water Research 30, No. 8: 1865-1875.

Boyd C. 2000. Water Quality: An Introduction. Kluwer Academic Publishers, BostonUSA.

Chatfield C. 1984. The Analysis of Time Series: An Introduction. $3^{\text {rd }}$ edition. Chapman and hall, New York - USA.

Chatfield. C. 1978. Statistics for Technology A Coarse in Applied Statistics, $2^{\text {nd }}$ edition. John Wiley \& Sons, New York - USA.

Clinton I. Chase. 1976. Elementary Statistical Procedure, $2^{\text {nd }}$ edition. McGraw-Hill Book Company, New Delhi - India.

Conrads, P.A., 1998, Effects of model output time-averaging on the determination of the assimilative capacity of the Waccamaw River and Atlantic Intracoastal Waterway near Myrtle Beach, South Carolina. Subcommittee on Hydrology of the Interagency Advisory Committee on Water Data, p. 2-93 to 2-100.

Elias Salameh. 1996. Water Quality Degradation in Jordan: Impact on Environment, Economy and Future Generations Resources Base. Jordan.

Ellis, G.W., Ge, X. and Grasso, D. 1990. Time Series Analysis of Wastewater Quality. Proceedings of the fifth IAWPRC Workshop, Japan, 26 July-3 August. NewYork: Pergamon Press: 441-448.

General Statistical Department. The Annual Statistical Book for the year 1999. G.S.D 2000.

Green J.R, and Magerison D 1978. Statistical Treatment of Experimental data. New York-USA.

Hammett, K.M. 1988. Land Use, Water Use, Streamflow, and Water Quality Characteristics of the Carlotte Harbor Inflow Area, Florida. USGS Open Files. Report: 87-472.

Hare, S.R. and R.C. Francis. 1994. Climate change and salmon production in the northeast Pacific Ocean. Publ. Fish. Aquat. Sci. 121, p. 357-372.

Koning N., and Roos JC 1999. The continued influence of organic pollution on the water quality of the turbid Modder River. Water SA Vol. 25 No. 3. P:285-292

LaValle, P.D., Lakhan, V.C., and Trenhaile A.S. 2000. Short Term Fluctuations of Lake Erie Wate Levels and the El Nio/Southern Oscillation. The Great Lakes Geographer, Vol.7, No. 1

Levine D. M., Patricia P. Ramsey, and Smidt R. K.. 2001. Applied Statistics for Engineers and Scientists Using Microsoft Excel and Minitab. Prentice-Hall, New Jersey-USA.

Lincoin L. Chao, 1974. Statistics Methods and Analyses, $2^{\text {nd }}$ edition. McGraw-Hill Kogukusha, LTD, California-USA.

Lu Guanghua, Tang Jie, Yuan Xing, and Zhao Yuanhui, 2001. Correlation for the structure and biodegradability of substituted benzenes in the Songhua river water. The National Natural Science Foundation of China 29877004. Vol. 3 No. 7 P. 34.

McBean E. A., and Rovers F. A. 1998. Statistical Procedures for Analysis of Environmental Monitoring Data and Risk Assessment. Prentice-Hall, New Jersey-USA.

McLeod A.I. \& Hipel K.W., 1994. Exploratory Spectral Analysis of Hydrological Time Series. Ontario, Canada. www.stats.vwo.ca

Metcalf and Eddy, 1991. Wastewater Engineering: Treatment, Disposal, and Reuse, $3^{\text {rd }}$ edition. McGraw-Hill, Inc., Singapore.

Miao-Hsiang P. and Jin-King L., 2000. Groundwater Level Forecasting with Time Series Analysis. HSIN-Chu, Taiwan, www.gisdevelopment.net

Ministry of Water and Irrigation, Water Authority of Jordan, Operational Manual, Amman- Jordan, 1998.

Montgomery, D., and Johnson L. 1976. Forecasting and Time Series Analysis.
McGraw-Hill Book Company, Japan.

Phil Spector. 1994. An Introduction to S and S-Plus. Duxbury Press an Imprint of Wadsworth Publishing Company. Belmont, California.

Pillai R.S.N. and Bagavathi V. 1997. Statistics: Theory and Practice. $9^{\text {th }}$ edition. Ram Nagar, New Delhi - India.

Royal Scientific Society, Monitoring the Water in King Talal Dam. Amman-Jordan. RSS Reports 1988-2001.

Royal Scientific Society. National Project for Assessment of Water Quality in Jordan. RSS Report 1998.

Robert B. Miller. 1988. Minitab Handbook for Business and Economics. PWS-Kent Publishing Company. Boston-USA.

Roedel, R. 1997. Time Series Analysis of Rising Underground Salt-Water from the Abandoned Werra Potash Mining District. Jour. Wasser und Boden 49, No.12: 27-30.

Sakakini A. E., 2001. Forecasting the Characteristics of Jordanian Domestic Wastewater Using Time Series, Master Thesis. University of Jordan. Amman-Jordan.

Solomatine D. P., Rojas C. J., Velickov S. and Wüst J. C., 2000. Chaos theory in predicting surge water levels in the North Sea. Proc. 4-th International Conference on Hydroinformatics, Iowa, USA, July 2000. p. 1-8. www.ihe.nl/hi/sol /papers/HI2000_ chaos.pdf.

Stegmann, R., Ehrig, H. and Liem, P. 1978. The Application of a Time-Series-Analysis in Water Quality Management. Jour. Wasser und Boden 30, No. 3: 50-54.

Stien M., and Lloret J. 1999. Forecasting of air and water temperatures for fishery with selected examples from northwest Atlantic. J. Northw. Atl. Fish. Sci., Vol. 29: 23-30

Warren Viessman, Jr. and Gray L. Lewis, 1996. Introduction to Hydrology, $4^{\text {th }}$ edition. Addison-Wesley Educational Publishers, Inc., USA.

Warren Viessman, Jr. and Mark J. Hammer, 1985. Water Supply and Pollution Control, $4^{\text {th }}$ edition. Harper and Roe Publishers, Inc., Florida-USA.

التحليل والتتبؤ بكمية ونوعية المياه الاخلة إلى سد الملك طل

إعداد
أحمد عبدالرزاق أحمد بني هاني
الاكتور أحمد الجمرة

يعتبر سد الملك طلال من أهم المشاريع المائية التي تم إنثائها لزر اعة مناطق شاسعة في وادي الأردن. و بالنالي فإن دراسة نو عية و كمية المياه في سد الملك طلال و المياه التي تصب فيه يجب أن نكون من الأولويات في الأردن.

تتركز هذه اللراسة في دراسة و نتبؤ نو عية و كمية المياه في نهر الزرقاء و الذي يعتبر الر افد الرئيسي لسد الملك طلالعبّر عن كمية المياه المستعملة في هذا البحث بالنتفق, ونوعية المياه بالمو اد العالقة الكلية, COD , ${ }^{\text {COD }}$, الفسفور الكلي, و النبتروجين الكلي في نهر الزرقاء. البيانات التي جمعت لكل متغير سجلت خلال 107 شهراً من العام 911 ا و حتى نهاية العام الطريقة المستخدمة في تحليل الستة متغيرات في نهر الزرقاء هي من خلال علاقة المتغير بنفسه (autocorrelation) و المتغبر مع متغير أخر عند نقطة معينة (و علاقة المتغير مع نفسه و لكن بعد مسافة افقية معينة (distance correlation) . و قد تم استخدام التتبؤ الحتمي (deterministic) و الإحتمالي (stochastic) لستة متغير ات لإيجاد أفضل نموذج للتنبؤ .

نتائج اللاراسة مؤشر إلى أن نموذج ARIMA نوذجاً جيداً في التتبؤ بمعظم الستة متغيرات. في تتؤ قيم ال BOD 5 لم يحقق أي من النماذج أقل من • (\% من خطأ المتوسط الحسابي, ومع ذلك فأن نموذج ARIMA أعطى أفضل نموذج وأقل نسبة من خطأ المتوسط الحسابي, أما في فيم ال COD فان نموذج ARIMA لم يعطِ أفضل النتائج. أفل نسبة من خطأ المتوسط الحسابي, و التي أعطيت من خلال نماذج ARIMA, كانت تعادل نسبة ^,؛\% في قيم الفسفور الكلي. أما في علاقة المتغيرات بعض ففد تمت معرفة مدى ترابط المتغيرات ببصن, هيئة الدتغيرات في نهر الزرقاء, مصدر المتنيرات, و معلومات أخرى عنها.

